

Question Paper - 1st May

Test Booklet Code परीक्षा पुस्तिका संकेत

No.: 6263791

This Booklet contains 40 pages. इस पुस्तिका में 40 पृष्ठ हैं।

nglish+Hindi

Do not open this Test Booklet until you are asked to do so. इस प्रीक्षा पुस्तिका को तब तक न खोलें जब तक कहा न जाए। Read carefully the Instructions on the Back Cover of this Test Booklet. इस परीक्षा पुस्तिका के पिछले आवरण पर दिए निर्देशों को ध्यान से पढ़ें।

Important Instructions:

- The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on side-1 and side-2 carefully with blue/black ball point pen only.
- The test is of 3 hours duration and Test Booklet contains 180 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 720.
- Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses.
- Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- On completion of the test, the candidate must hand over the Answer Sheet to the invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is Y. Make sure that the CODE printed on Side-2 of the Answer Sheet is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- Use of white fluid for correction is NOT permissible on the Answer Sheet.

महत्वपूर्ण निर्देश :

- उत्तर पत्र इस परीक्षा पुस्तिका के अन्दर रखा है। जब आपको परीक्षा पुस्तिका खोलने को कहा जाए, तो उत्तर पत्र निकाल कर ध्यानपूर्वक पृष्ठ-1 एवं पृष्ठ-2 पर केवल नीले / काले बॉल पॉइंट पेन से विवरण भरें।
- 2. परीक्षा की अवधि 3 घंटे है एवं परीक्षा पुस्तिका में 180 प्रश्न हैं। प्रत्येक प्रश्न 4 अंक का है। प्रत्येक सही उत्तर के लिए परीक्षार्थी को 4 अंक दिए जाएंगे। प्रत्येक गलत उत्तर के लिए कुल योग में से एक अंक घटाया जाएगा। अधिकतम अंक 720 हैं।
- इस पृष्ठ पर विवरण ॲिकत करने एवं उत्तर पत्र पर निशान लगाने के लिए केवल नीले / काले बॉल पॉइंट पेन का प्रयोग करें।
- 4. रफ कार्य इस परीक्षा पुस्तिका में निर्धारित स्थान पर ही करें।
- 5. परीक्षा सम्पन्न होने पर, परीक्षार्थी कक्ष / हॉल छोड़ने से पूर्व उत्तर पत्र कक्ष निरीक्षक को अवश्य सौंप दें। परीक्षार्थी अपने साथ प्रश्न प्रस्तिका को ले जा सकते हैं।
- 6. इस पुस्तिका का संकेत है Y। यह सुनिश्चित कर लें कि इस पुस्तिका का संकेत, उत्तर पत्र के पृष्ठ-2 पर छपे संकेत से मिलता है। अगर यह भिन्न हो तों परीक्षार्थी दूसरी परीक्षा पुस्तिका और उत्तर पत्र लेने के लिए निरीक्षक को तुरन्त अवगत कराएं।
- परीक्षार्थी सुनिश्चित करें िक इस उत्तर पत्र को मोड़ा न जाए एवं उस पर कोई अन्य निशान न लगाएं। परीक्षार्थी अपना अनुक्रमांक प्रश्न पुस्तिका / उत्तर पत्र में निर्धारित स्थान के अतिरिक्त अन्यत्र ना लिखें।
- उत्तर पत्र पर किसी प्रकार के संशोधन हेतु व्हाइट फ़्लूइड के प्रयोग की अनुमति नहीं है।

In case of any ambiguity in translation of any question, English version shall be treated as final. प्रश्नों के अनवाद में किसी अस्पष्टता की स्थित में, अंग्रेजी संस्करण को ही अंतिम माना जायेगा।

SEAL

(4)

Transferable 🗸

AIPMT 2016

Question Paper - 1st May

Y English+Hindi 1. In a testcross involving F1 dihybrid flies, more परीक्षार्थ प्रसंकरण में, जिसमें F, द्विसंकर मक्खियाँ शामिल थीं, parental-type offspring were produced than the पुनर्योगज प्रकार की संततियों की तुलना में जनक-प्रकार की recombinant-type offspring. This indicates: संतितयाँ अधिक उत्पन्न हुयीं। इसमें संकेत मिलते हैं कि : Both of the characters are controlled by more दोनों ही लक्षणों का नियंत्रण एक से अधिक जीनों द्वारा than one gene. होता है। (2)The two genes are located on two different chromosomes. दो जीन दो अलग गुणसूत्रों पर स्थित हैं। (2)Chromosomes failed to separate during (3) अर्धसूत्रण के दौरान गुणसूत्र पृथक नहीं हो पाए। (3)दो जीन सहलग्न हैं और एक ही गुणसूत्र पर विद्यमान (4)The two genes are linked and present on the same chromosome. पादप कोशिका की रसधानी में जल घुलित वर्णक कौन से होते Water soluble pigments found in plant cell vacuoles हॅं? are (1) एन्थोसायनिन Anthocyanins जैन्थोफिल (2)(2)Xanthophylls 3 (3)पर्णहरित (3)Chlorophylls कैरोटिनाइड (4)(4)Carotenoids X हॉर्मोनों के निम्नलिखित युग्मों में से कौन-सा युग्म एक-दूसरे Which of the following pairs of hormones are not का विरोधी (विपरीत प्रभाव वाला) **नहीं** है? antagonistic (having opposite effects) to each other? रिलैक्सिन इन्हिबिन Relaxin-(1) Inhibin पैराथोर्मोन कैल्सिटोनिन (2)Parathormone Calcitonin ग्लुकैगॉन इंसुलिन (3)Insulin Glucagon ऐल्डोस्टेरॉन एट्रियल नेट्रियूरेटिक कारक (4) (4) Aldosterone Atrial Natriuretic Factor माइटोकॉन्ड्रिया और क्लोरोप्लास्ट (हरितलवक) हैं : Mitochondria and chloroplast are: अर्धस्वायत्त अंगक हैं। (a) (a) semi-autonomous organelles. पूर्ववर्ती अंगकों के विभाजन से बनते हैं और उनमें DNA होता है, लेकिन प्रोटीन-संश्लेषी प्रणाली का (b) formed by division of pre-existing organelles and they contain DNA but lack protein अभाव होता है। synthesizing machinery. निम्नलिखित विकल्पों में से कौन-सा सही है? Which one of the following options is correct? (a) और (b) दोनों ही ग़लत हैं। (1) Both (a) and (b) are false. (1) (a) और (b) दोनों सही हैं। (2)(2)Both (a) and (b) are correct. (b) सही है लेकिन (a) ग़लत है। (3)(3)(b) is true but (a) is false. (a) सही है लेकिन (b) ग़लत है। (a) is true but (b) is false. निम्नलिखित में से कौन सा एक प्लाज्मिड का अभिलक्षण नहीं 5. Which of the following is not a feature of the 意? plasmids? एकल - रज्ज्ज्कीय (1) Single - stranded p स्वतन्त्र प्रतिकृतीयन (2)(2)Independent replication · वृत्तीय संरचना (3)(3) Circular structure

स्थानान्तरण योग्य

(4)

Question Paper - 1st May

English+Hindi

A plant in your garden avoids photorespiratory losses, has improved water use efficiency, shows high rates of photosynthesis at high temperatures and has improved efficiency of nitrogen utilisation. In which of the following physiological groups would you assign this plant?

Nitrogen fixer >

 C_3 (3)

 C_4 CAM (4)

Emerson's enhancement effect and Red drop have been instrumental in the discovery of:

- (1) Oxidative phosphorylation
- Photophosphorylation and non-cyclic (2)electron transport
- (3)Two photosystems operating simultaneously
- Photophosphorylation and cyclic electron transport
- Which type of tissue correctly matches with its

Tissue Cuboidal epithelium Smooth muscle

Location Lining of stomach

Areolar tissue

Wall of intestine Tendons X

Transitional epithelium Tip of nose >

When does the growth rate of a population following the logistic model equal zero? The logistic model is given as dN/dt = rN(1-N/K):

- when death rate is greater than birth rate.
- (2) when N/K is exactly one. (3)when N nears the carrying capacity of the habitat.
- (4) when N/K equals zero.

10. Which one of the following statements is not true

- Stored pollen in liquid nitrogen can be used in the crop breeding programmes
- Tapetum helps in the dehiscence of anther Exine of pollen grains is made up of sporopollenin ~
- (4) Pollen grains of many species cause severe allergies
- Which one of the following statements is wrong?
 - Phycomycetes are also called algal fungi.
 - Cyanobacteria are also called blue-green
 - Golden algae are also called desmids. Eubacteria are also called false bacteria.

आपके उद्यान में एक पादप प्रकाश श्वसन से होने वाली हानि से बचता है, उसकी जल उपयोग की दक्षता उन्नत है, वह उच्च ताप पर प्रकाश संश्लेषण की उच्च दर को दर्शाता है और उसकी नाइट्रोज़ीन उपयोग की दक्षता उन्नत है। आप इस पादप को ्रिक्मेलिखित में से किस एक कार्यिकी समृह में रखेंगे ?

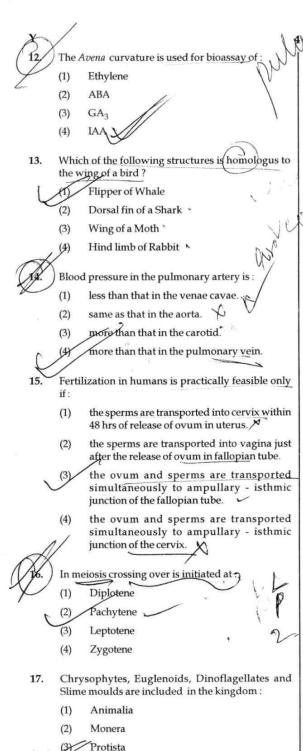
नाइट्रोजन स्थिरिकारक

(4) CAM

- इमर्सन दीर्घीकरण प्रभाव और लाल बूंद (रेड ड्राप) किसकी खोज में प्रमुख यन्त्र रहे हैं?
 - ऑक्सीडेटिव फास्फोरिलेशन (1)
 - प्रकाशफास्फोरिलेशन और अचक्रीय इलेक्ट्रॉन अभिगमन (2)
 - दो प्रकाश तन्त्रों का एक साथ कार्य करना (3)
 - प्रकाशफास्फोरिलेशन और चक्रीय इलेक्ट्रॉन अभिगमन (4)
- कौन-सा ऊतक अपनी स्थिति से सही-सही मैच करता है?

3/1/1	зла	स्थिति
(1)	घनाकार उपकला	आमाशय आस्तर
(2)	चिकनी पेशी	आंत्र भित्ति
(3)	ऐरिओली ऊतक	कंडरा
(4)	परिवर्ती उपकला	नासिकाग्र

लॉजिस्टिक मॉडल का अनुसरण करते हुए किसी समध्टि की वृद्धि दर शुन्य के बराबर कब होगी? लॉजिस्टिक मॉडल को निम्नलिखित समीकरण से दर्शाया गया है :


dN/dt = rN(1-N/K)

- जब जन्मदर की अपेक्षा मृत्युदर अधिक हो। (1)
- जब N/K ठीक एक हो। (2)
- जब N पर्यावास की धारिता क्षमता के समीप हो।
- जब N/K शून्य के बराबर हो।
- निम्नलिखित में से कौन सा कथन सत्य नहीं है? 10.
 - द्रवित नाइट्रोजन में भण्डारित परागकण, फसल प्रजनन योजनाओं में प्रयुक्त किये जा सकते हैं
 - परागकोष के स्फुटन में टेपीटम सहायता करती है (2)
 - परागकणों की बाह्यचोल स्पोरोपोलेनिन की बनी होती है (3)
 - बहुत सी जातियों के परागकण गम्भीर प्रत्युर्जता पैदा करते हैं
- निम्नलिखित में से कौन सा कथन गलत है?
 - फाइकोमाइसिटीज को शैवलित कवक भी कहा जाता
 - सायनोबैक्टीरिया को नील-हरित शैवाल भी कहते हैं। (2)
 - स्वर्णिम शैवालों को डेस्मिड भी कहते हैं। (3)
 - युबैक्टीरिया (सुजीवाणुओं) को असत्य जीवाणु भी कहा जाता है।

CODE

Question Paper - 1st May

(4)

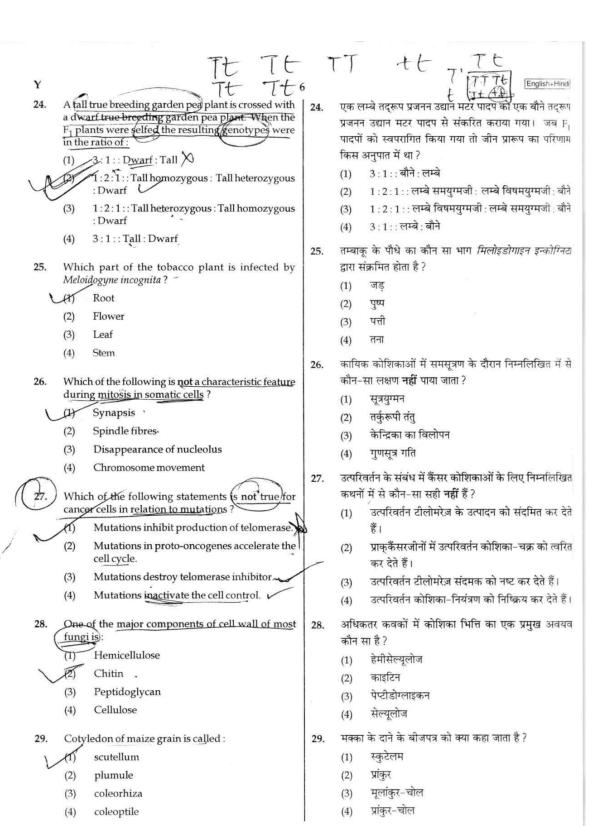
Fungi

एवीना वक्रता किसके जैव आमा एथिलीन (1) (2)ABA (3) GA_3 IAA (4) निम्नलिखित संरचनाओं में से कौन 13. समजात है: ह्वेल् क्रा फ्लीपर (1) (2)्रमॉर्के की पुष्ठ पंख (3) शलभ का पंख खरगोश का पश्च पाद (4)फुप्फुस धमनी के भीतर रुधिर दाब होता है : महाशिरा के भीतर जितना होता है उससे कम होता है। (1) उतना ही जितना महाधमनी के भीतर होता है। (2)कैरोटिड के भीतर जितना होता है उससे अधिक होता (3)फुप्फुस शिरा के भीतर जितना होता है उससे अधिक (4)होता है। मानवों में निषेचन प्रक्रिया व्यावहारिकतः तभी संभव होगी जब : ग्रीवा के भीतर शुक्राणुओं का स्थानांतरण गर्भाशय में (1)

- अंडाणु के निर्मुक्त होने के 48 घंटे के भीतर होता हो।
- शक्राणुओं का योनि के भीतर स्थानांतरण अंडाणु के (2)फैलोपी नली में छोड़े जाने के ठीक बाद हो।
- अंडाण और शुक्राणुओं का स्थानांतरण फैलोपी नली के (3)एंपुलरी - इस्थमिक संगम पर एक ही समय पर हो।
- अंडाणु और शुक्राणुओं का स्थानांतरण ग्रीवा के एंपुलरी (4)इस्थमिक संगम पर एक ही समय पर होता हो।
- अर्द्धसूत्री विभाजन में जीन विनिमय किस अवस्था में आरम्भ होता है ?
 - द्विपट्ट (1)
 - स्थूलपट्ट (2)
 - (3)तनुपट्ट
 - (4)युग्मपट्ट
- क्राइसोफाइट, युग्लीनॉइड, डाइनोफ्लेजेलेट और अवपंक फफूंदी 17. किस जीव जगत में सम्मिलित हैं?
 - (1) जंतुजगत
 - मोनेरा (2)
 - प्रोटिस्टा (3)
 - कवक (4)

English+Hindi

AIPMT 2016


Question Paper - 1st May

Lack of relaxation between successive stimuli in उत्तरोत्तर उद्दीपनों के बीच विश्रांति की कमी के कारण होने वाली sustained muscle contraction is known as: दीर्घकालिक पेशी संकुचन कहलाता है : (i) Tonus टोनस Spasm ऐंठन (स्पाज्म) (2)(3)Fatigue थकान (3)(4)Tetanus टिटेनस (4) Identify the correct statement or inhibin 'इंहिबिन' के बारे में सही कथन पहचानिए : 19. Is produced by nurse cells in testes and यह वृषणों की धात्री (नर्स) कोशिकाओं द्वारा उत्पन्न inhibits the secretion of LH. होता है और LH-स्रवण को संदमित करता है। (2)Inhibits the secretion of LH, FSH and LH, FSH और प्रोलैक्टिन स्रवण को संदमित करता है। (2)Prolactin. यह अंडाशय की कणिकीय कोशिकाओं द्वारा उत्पन्न Is produced by granulose cells in ovary and (3)होता है और FSH स्रवण को संदमित करता है। inhibits the secretion of FSH. A यह अंडाशय की कणिकीय कोशिकाओं द्वारा उत्पन्न Is produced by granulose cells in ovary and (4)होता है और LH-स्रवण को संदमित करता है। inhibits the secretion of LH. श्र्रप्रपान करने के कारण प्रधानत: उत्पन्न होने वाले दीर्घकाली 20. 20. Name the chronic respiratory disorder caused श्वसन-विकार का नाम बताइए : mainly by cigarette smoking: श्वसन क्षारमयता Respiratory alkalosis वाष्ट्रस्भीति Emphysema क्रमधमा Asthma श्वसन आम्लरक्तता Respiratory acidosis नेम्नलिखित में से कौन-सा हीमोफ़ीलिया का सबसे अधिक Which of the following most appropriately describes उपयुक्त वर्णन प्रस्तुत करता है ? haemophilia? प्रभावी/जीन का विकार (1)(1) Dominant gene disorder > अप्रभावी जीन का विकार (2)Recessive gene disorder 🗸 X -सहलग्न अप्रभावी जीन का विकार (3) X - linked recessive gene disorde गुणसूत्री विकार (4) Chromosomal disorder . सही कथन चुनिए: 22. Select the correct statement: अनावृतबीजी पादपों की पत्तियां जलवायु की चरमता के (1)The leaves of gymnosperms are not well लिए अनुकृलित नहीं होती हैं adapted to extremes of climate अनावृतबीजी, समबीजाणुक और विषमबीजाणुक, दोनों (2)Gymnosperms are both homosporous and प्रकार के होते हैं heterosporous V terre (3) साल्विनिया, जिंगो और पाइनस, ये सभी अनावृतबीजी Salvinia, Ginkgo and Pinus gymnosperms सिकोइया सबसे लम्बे वृक्षों में से एक है Sequoia is one of the tallest trees $oldsymbol{L}$ लैक प्रचालेक की अभिव्यक्ति के लिए निम्नलिखित में से कौन 23. Which of the following is required as inducer(s) for 23. एक प्रेरक के रूप में कार्य करने के लिए आवश्यक होगा ? the expression of Lac operon? लैक्टोज और गैलेक्टोज lactose and galactose 🦠 (1) (2)ग्लकोज (2)glucose गैलेक्टोज (3) galactose लैक्टोज (4) lactose

CODE

E	English+Hindi]	7		Y
3		ich of the following would appear as the pioneer anisms on bare rocks? Green algae	30.		नग्न चट्टान पर एक अग्रगामी जीव के रूप में निम्नलिखित कौन आयेगा ? हरित शैवाल लाइकेन लिवरवर्ट
	(3)	Lichens Liverworts		(2)	लाइकेन
	(4)	Mosses		(3) (4)	लिवरवर्ट \ \ \ \ \ \ \ "
	con	anges in GnRH pulse frequency in females is trolled by circulating levels of:	31.		ओं में GnRH पल्स बारंबारता बदलाव का नियंत्रण किसके चरण-स्तरों द्वारा होता है ?
	(1)	progesterone and inhibin			
	C3	estrogen and progesterone	1	(1)	प्रोजेस्टेरॉन और इंहिबिन
	(3)	estrogen and inhibin		(2)	ईस्ट्रोजन और प्रोजेस्टेरॉन
	(4)	progesterone only		(3)	ईस्ट्रोजन और इंहिबिन केवल प्रोजेस्टेरॉन
(33	Ant	ivenom injection contains preformed antibodies	1	(4)	कपल प्राजस्टरान
Y	whi	le polio drops that are administered into the body	32.	प्रति उ	गविष टीकों में पूर्वनिर्मित प्रतिरक्षी होते हैं जबकि पोलियो
	· (1)	Attenuated pathogens 9			्रैदों में, जिन्हें मुँह द्वारा दिलाया जाता है, होते हैं :
	(2)	Activated pathogens		(1)	क्षीण कर दिए गए रोगजनक
	(3)	Harvested antibodies		(2)	सिक्रियित रोगजनक
	(4)	Gamma globulin 🔏		(3)	बनाए गए प्रतिरक्षी
	17	giocum, v	1	(4)	गामा ग्लोब्युलिन
33	3. Pho	tosensitive compound in human eye is made if:	33.	मानव	नेत्र में प्रकाशसंवेदी यौगिक बना होता है :
	(1)	Transducin and Retinene		(1)	ट्रांस्ड्यूसिन और रेटिनीन से
	(2)	Guanosine and Retinol		(2)	ग्वानोसिन और रेटिनॉल से
	(3)	Opsin and Retinal		(3)	ओप्सिन और रेटिनल से
	(4)	Opsin and Retinol		(4)	ओप्सिन और रेटिनॉल से
		opon unit			
34	. Spec	rialised epidermal cells surrounding the guard are called:	34.		होशिकाओं को घेरने वाली विशिष्टीकृत बाह्यत्वचीय काओं को क्या कहा जाता है ?
	(1)	Lenticels	1	(1)	वातरन्ध्र
	(2)	Complementary cells		(2)	प्रक कोशिकाएं
1	(3)	Subsidiary cells \		(3)	सहायक कोशिकाएं
	(4)	Bulliform cells X			
25	5.5			(4)	आवर्ध त्वक्कोशिकाएं 🐪
35		ch of the following features is not present in the	35.	निम्नि	तखित लक्षणों में से कौन-सा लक्षण फ़ाइलम - आर्थ्रोपोडा
		um - Arthropoda?			पाया जाता ?
		Jointed appendages		(1)	संधित उपांग
	(2)	Chitinous exoskeleton		(2)	काइटिनी बाह्यकंकाल
	(3)	Metameric segmentation		(3)	विखंडी खंडीभवन
0	(4)- \	Parpodia Parpodia Quelle dion in pH of blood will:		(4)	पार्श्वपाद
(36.	/ //	igtion in pH of blood will:	36.	रुधिर ह	के pH में होने वाली कमी के कारण :
	(1)	release bicarbonate ions by the liver.		(1)	यकृत द्वारा बाइकार्बोनेट का निष्कासन होने लगेगा।
	(2)	reduce the rate of heart beat.		(2)	हृदय-स्पंदन की दर कम हो जायेगी।
	(3)	reduce the blood supply to the brain.		20.00	मस्तिष्क का रुधिर संभरण कम हो जायेगा।
	(4)	decrease the affinity of hemoglobin with		(3)	Company of the Asset Community Commu
		oxygen.		(4)	ऑक्सीजन के साथ हीमोग्लोबिन की बंधुता घट जायेगी।

Y	21-	(23)		20	2	B	71	P. 11	Finalish+Hindi
			1	44	7		ر ک	('	
37.	Which of the following character always holds true for the correct of animals?		37.		ालाखत म ह्रपी वर्ग में			शष्ट लक्षण ह	हमेशा ही जंतुओं के
	3 - chambered heart with			(1)	तीन कक्ष	वाला हत	य जिस	ामें अपूर्णतः	रेप्टीलिया
	(1) one incompletely divided R	Reptilia 🔀		(1)	बंटा हुआ	एक निल	नय होता	है	रप्टालया
	ventricle artilaginous			(2)	उपास्थिल	अंत:कंव	काल		कॉॅंड्रिक्थीज़
1	endoskeleton	Chondrichthyes		(3)	सजीवप्रज	क			ममैलिया
	1-1	Mammalia			ऊपरी और	निचले	जबड़े व	त्राला मुख	
	(4) Possess a mouth with an upper and a lower jaw	Chordata		(4)	का पाया				कार्डेटा
38.	Match the terms in Column I with	h their description	38.						गए उनके वर्णन से
	in Column II and choose the corr			मैच	कीजिए त		विकल्प	-	
		Column II			कॉलम	I			लम॥
	single	genes govern a character		(a)	प्रभाविता		(i)	अनेक जीन नियंत्रण क	एकल लक्षण का रते हैं।
	(b) Codominance (ii) In a organi	ism only one allele		(b)	सहप्रभावि	ता	(ii)	~	ो जीव में केवल एक
	expres	sses itself						and wangers a	वयं को अभिव्यक्त
	(c) Pleiotropy (iii) In a	heterozygous ism both alleles		200				करता है।	2 -2- 2- 2- 2-
		ss themselves fully		(c)	बहुप्रभावि	ता	(111)	गेलील उ	ही जीव में दोनों ही वयं को पूरी तरह
		le gene influences			W	W	yar	अभिव्यक्त	करते हैं।
		characters	1	(d)	अंदु स्मीनी	yy वंशागति	(iv)		अनेक लक्षणों को
	Code:	0		TX) a	-1311 1141	(10)	प्रभावित क	
	(a) (b) (c) (d) (1) (iv) (iii) (i) (ii)	1	704	को	ਭ:				
	(2) (ii) (i) (iv) (iii)	/ 1/1	10/		(a)	(b)	(c)	(d)	
11	(3) (ii) (iii) (iv) (i)	ral		(1)	(iv) (ii)	(iii)	(i) (iv)	(ii) (iii)	
	(4) (iv) (i) (ii) (iii)	r		(3)	(ii)	(i) (iii)	(iv)	(ii)	
(39.	A typical fat motecule is made up	p of :		(4)	(iv)	(i)	(ii)	(iii)	
	(1) Three glycerol and three fa		39.	एक			-	का बना होत	
	Three glycerol/molecules	and one fatty acid		(1)					न अणुओं का
	molecule	thu a sid we alcoudes		(2)					सा अम्ल अणु का
	(3) One glycerol and three fat(4) One glycerol and one fatty	50		(3)	100000000000000000000000000000000000000		-	ार तान वसा इ. वसा अम्ल	अम्ल अणुओं का
6	//			(4)					
40.	Proximal end of the filament of to the:	stamen is attached	40.	-				सरा किससे	जुड़ा होता है ?
1	(1) Thalamus or petal			(1)	पुष्पास परागक	न या दर	1		
	(2) Anther			(2)	परागक संयोज				
	(3) Connective			(3)	बीजाए				
	(4) Placenta								÷ 3
41.	Which one of the following state	ements is wrong?	41.					व्यन गलत है युक्त अमीनो	
4	(1) Glycine is a sulphur conta	aining amino acid.	K	(1)		पन एक । एक डा		-	N4.161
~	(2) Sucrose is a disaccharide.	127		(2) (3)				_{२७ ए ।} कैराइड है।	
	(3) Cellulose is a polysacchar	ride.		(4)	40	न एक वि			
	(4) Uracil is a pyrimidine.		1	(-)	6,,,,,	3.1.1			

Question Paper - 1st May

> trassespreation - during day English+Hindi Water vapour comes out from the plant leaf through the stomatal opening. Through the same stomatal opening carbon dioxide diffuses into the plant during photosynthesis. Reason out the above statements using one of following options: 9 One process occurs during day time, and the (1) other at night. processes Both cannot happen (2)simultaneously. Both processes can happen together because the diffusion coefficient of water and CO2 is 43. The above processes happen only during (4) night time. 🗴 A complex of ribosomes attached to a single strand of RNA is known as: (1) Okazaki fragment 7 (2) Polysome (3) \ Polymer > Polypeptide A Which one of the following is a characteristic feature of cropland ecosystem? Ecological succession (1) Absence of soil organisms & (2) Least genetic diversity Absence of weeds A Which of the following is the most important cause of animals and plants being driven to extinction? Co-extinctions (1) (2)Over - exploitation Alien species invasion (4) Habitat loss and fragmentation In a chloroplast the highest number of protons are 46. found in: Antennae complex (1) (2) Stroma Lumen of thylakoids Inter membrane space Which of the following is not required for any of the techniques of DNA fingerprinting available at DNA - DNA hybridization (1) (2)Polymerase chain reaction Zinc finger analysis

Restriction enzymes

- पादप पत्ती से जल वाष्प रन्ध्रों के द्वारा बाहर आता है प्रकाशसंश्लेषण के दौरान उसी रन्ध्र से कार्बन डाइऑक्साइड पादप में विसरित होती है। उपर्युक्त कथनों में (कारणों पर विचार कर) एक विकल्प चुनिए:
 - एक प्रक्रिया दिन में तथा दूसरी प्रक्रिया रात में होती है। (1)
 - दोनों प्रक्रियाएं एक साथ नहीं हो सकती। (2)
 - दोनों प्रक्रियाएं एक साथ हो सकती हैं क्योंकि जल और (3)CO2 का विसरण गुणांक भिन्न है।
 - उपर्युक्त प्रक्रियाएं केवल रात में हो सकती हैं। (4)
- राइबोसोम का एक संकुल जो RNA के एकल रज्जुक के साथ जुड़ा होता है, क्या कहलाता है?
 - ओकाजाकी खण्ड (1)
 - पॉलीसोम (2)

- पॉलीमर (बहुलक) (3)
- पॉलीपेप्टाइड (4)
- निम्नलिखित में से कौन एक कृषिभूमि पारितन्त्र का अभिलक्षण 44. 書?
 - पारितन्त्रिक अनुक्रमण (1)
 - मदा जीवों की अनुपस्थिति (2)
 - न्यूनतम आनुवंशिक विविधता (3)
 - अपतृणों की अनुपस्थिति (4)
- जन्तुओं और पादपों की विल्पित का निम्नलिखित में से कौन सा 45. एक सबसे मुख्य कारण है ?
 - सह-समाप्ति (1)
 - अति दोहन (2)
 - विदेशी जाति की चढाई (3)
 - आवास हानि और खंडन (4)
- हरित लवक में प्रोटॉन की अधिकतम संख्या कहाँ पायी जाती 46. 青?
 - ऐन्टेना समुच्च (1)
 - पीठिका (2)
 - थाइलेकोइड की अवकाशिका (3)
 - (4)अन्तरा कला स्थान
- डी.एन.ए. अंगुलिछापी की किसी भी तकनीक के लिए 47. निम्नलिखित में से किस एक की आवश्यकता नहीं होती?
 - डी.एन.ए. डी.एन.ए. संकरण
 - पॉलीमरेज शृंखला अभिक्रिया (2)
 - जिंक अंगुलि विश्लेषण (3)
 - प्रतिबंधन एंजाइम

Question Paper - 1st May

Y

10

English+Hindi

- 48. The primitive prokaryotes responsible for the production of biogas from the dung of ruminant animals, include the:
 - (1) Eubacteria
 - (2) Halophiles
 - (3) Thermoacidophiles

Methanogens

- 49. Which of the following features is not present in Periplaneta americana?
 - (1) Metamerically segmented body
 - (2) Schizocoelom as body cavity
 - (3) Indeterminate and radial cleavage during embryonic development
 - Exoskeleton composed of N-acetylglucosamine
- 50. A system of rotating crops with legume or grass pasture to improve soil structure and fertility is called:
 - (1) Shifting agriculture
 - (2) Ley farming
 - (3) Contour farming
 - (4) Strip farming
- 51. Which of the following is wrongly matched in the given table?

	Microbe	Product	Application
(I)	Clostridium butylicum	Lipase	removal of oil stains
(2)	Trichoderma polysporum	Cyclosporin A	immunosuppressive drug
(3)	Monascus purpureus	Statins	lowering of blood cholesterol
(4)	Streptococcus	Streptokinase	removal of clot from blood vessel

52. In mammals, which blood vessel would normally carry largest amount of urea?

- (1) Hepatic Portal Vein
- (2) Renal Vein
- (3) Dorsal Aorta
- (4) Hepatic Vein

- वे आदिम प्राक्केन्द्रकी प्राणी, जो रोमन्थी जंतुओं के गोबर से बायोगैस-उत्पादन के लिए उत्तरदायी होते हैं, किसके अंतर्गत आते हैं?
 - (1) सुजीवाणुओं के
 - (2) लवणरागियों के
 - (3) ताप-अम्ल रागियों के
 - (4) मीथैनजनकों के
- 49. निम्नलिखित में से कौन–सा लक्षण पेरिप्लैनेटा अमेरिकाना में नहीं पाया जाता ?
 - (1) विखंडश: खंडित देह
 - (2) देहगुहा के रूप में दीर्णगुहा
 - (3) भ्रूणीय परिवर्धन के दौरान अनिर्धारित और अरीय विदलन
 - (4) N एसेटिलग्लुकोसऐमीन से निर्मित बाह्यकंकाल
- 50. मृदा संरचना और उर्वरकता में सुधार लाने के लिए फसलों को फलीदार पौधों (लेग्यूम) या घास चारगाह के साथ बदलकर लगाने को क्या कहा जाता है?
 - (1) स्थानान्तरी कृषि
 - (2) ले खेती
 - (3) समोच्चरेखीय खेती
 - (4) पट्टीदार खेती
- 51. नीचे दी गयी तालिका में गलत मिलायी गयी मदों को चुनिए:

	मूक्ष्मजीव	उत्पाद	अनुप्रयोग
(1)	क्लॉस्ट्रीडियम ब्यूटायलिकम	लाइपेज़	तेल के धब्बों को हटाना
(2)	ट्राईकोडर्मा पोलीस्पोरम	साइक्लोस्पोरिन - A	प्रतिरक्षा संदमक औषधि
(3)	मोनैस्कस परप्यूरीयस	स्टेटिंस	रुधिर-कोलेस्ट्रॉल को कम करना
(4)	-	स्ट्रेप्टोकइनैज	रुधिर-वाहिका से थक्के को हटाना

- स्तनधारियों में, कौन-सी रुधिर-वाहिका सामान्यतः सबसे अधिक यूरिया वहन करती है?
 - (1) यकृत निवाहिका शिरा
 - (2) वृक्क शिरा
 - (3) पृष्ठ महाधमनी
 - (4) यकृत शिरा

Question Paper - 1st May

Englis	hAHindi	1	1
(53.)	Piek	out the correct statements :	53.
TU	(a)	Haemophilia is a sex-linked recessive disease.	3
	(b)	Down's syndrome is due to aneuploidy	
	(c)	Phenylketonuria is an autosomal recessive gene disorder.	
	(d)	Sickle cell anaemia is an X - linked recessive gene disorder.	A
1	(1)	(a), (b) and (c) are correct.	
	(2)	(a) and (d) are correct.	
	(3)	(b) and (d) are correct.	
	(4)	(a), (c) and (d) are correct.	
54.		th of the following guards the opening of topancreatic duct into the duodenum?	54.
	4	Sphincter of Oddi '	
	(2)	Semilunar valve 🏲	
	(3)	Ileocaecal valve o	
	(4)	Pyloric sphincter 🛭	
55.	Micro	otubules are the constituents of :	
	(1)	Centrosome, Nucleosome and Centrioles	55.
	(2)	Cilia, Flagella and Peroxisome's	
	(3)	Spindle fibres, Centrioles and Cilia.	
	(4)	Centrioles, Spindle fibres and Chromatin	
56.	The c	oconut water from tender coconut represents:	
Í.	(1)	Free nuclear endosperm	56.
	(2)	Endocarp	
	(3)	Fleshy mesocarp	
	(4)	Free nuclear proembryo	
57.	Trica:	rpellary, syncarpous gynoecium is found in ors of:	57.
	(1)	Poaceae	
	(2)	Liliaceae	
	(3)	Solanaceae	
	(4)	Fabaceae	
58.	Whic	h of the following is not a stem modification?	58.
	(1)	Flattened structures of Opuntia	
1	(2)	Pitcher of Nepenthes.	
	(3)	Thorns of citrus	
	(4)	Tendrils of cucumber	

Y सही कथन चुनिए: हीमोफ़ीलिया लिंग-सहलग्न अप्रभावी रोग है। डाउन सींड्रोम असुगुणिता के कारण होता है। (b) फ़ेनिलकीटोनमेह (फिनाइलकीटोन्य्रिया) एक अलिंग सूत्री अप्रभावी जीन विकार है। दात्र कोशिका स्क्ताल्पता X -सहलग्न अप्रभावी जीन (d) विकार है। (a), (b) और (c) सही हैं। (1) (a) और (d) सही हैं। (2) (b) और (d) सही हैं। (3)(a), (c) और (d) सही हैं। निम्नलिखित में से कौन-सी संरचना यकुदग्न्यास की वाहिनी के ग्रहणी में खुलने वाले रंध्र की देखभाल करती है? ओडाई को अवरोधिनी (1) अर्धचंद्राकार कपाट (2)त्रिकांत्र कपाट (3)जठरनिर्गम अवरोधिनी (4) सूक्ष्मनलिकाएँ संघटक होती हैं : तारककायों, न्यूक्लियोसोम और तारककेन्द्रों के (1) पक्ष्माभों, कशाभों और परऑक्सीकायों के (2)तर्कुरूपी रेशों, तारककेन्द्रों और पक्ष्माभों के (3)तारककेन्द्रों, तर्कुरूपी रेशों और क्रोमैटिन के कच्चे नारियल में, नारियल पानी क्या है? स्वतन्त्र केन्द्रकी भ्रूणपोष अन्त:फलभित्ति (2)गृदेदार मध्यफलभित्ति (3)स्वतन्त्र केन्द्रकी भ्रूणपूर्वी त्रिकोष्ठकी, युक्ताण्डपी जायाँग किसके पुष्प में होता है? पोएसी (1) लिलिएसी (2)सोलैनेसी (3)फैबेसी (4)निम्नलिखित में से कौन एक तने का रूपान्तरण नहीं है? ओपंशिया की चपटी संरचना (1)

नेपन्थीज का घट

सिट्स के कांटे

खीरे के प्रतान

(2)

(3)

Question Paper - 1st May

Y

12

English+Hindi

59. The tag polymerase enzyme is obtained from:

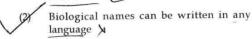
(1) Pseudomonas putida

(2) Thermus aquaticus

- (3) Thiobacillus ferroxidans
- (4) Bacillus subtilis

60. Stems <u>modified</u> into flat green organs performing the functions of leaves are known as:

- (1) Scales
- (2) Cladodes
- (3) Phyllodes


Phylloclades

- 61. In higher vertebrates, the immune system can distinguish self-cells and non-self. If this property is lost due to genetic abnormality and it attacks self-cells, then it leads to:
 - (1) Active immunity
 - (2) Allergic response
 - (3) Graft rejection

Auto-immune disease

- 62. Nomenclature is governed by certain universal rules. Which one of the following is contrary to the rules of nomenclature?
 - (1) When written by hand, the names are to be underlined

- (3) The first word in a biological name represents the genus name, and the second is a specific epithet
- (4) The names are written in Latin and are italicised
- 63. In bryophytes and pteridophytes, transport of male gametes requires:

- (2) Wind
- (3) Insects
- (4) Birds

59. टैक पॉलिमरेज एन्जाइम किससे प्राप्त किया जाता है?

- (1) स्यूडोमोनास प्यूटिडा
- (2) थर्मस एक्वेटिकस
- (3) थियोबैसिलस फेरोक्सीडेन्स
- (4) बैसिलस सबटिलिस

60. पत्तियों का कार्य करने वाले, चपटे हरे अंग में रूपान्तरित तने को क्या कहा जाता है?

- (1) शलक
- (2) पर्णाभ पर्व
- (3) पणीभ
- (4) पर्णाभ वृन्त

61. उच्चतर कशेरुकियों में, प्रतिरक्षा तंत्र स्व-कोशिकाओं और ग़ैर-कोशिकाओं में भेद कर सकता है। यदि तंत्र का आनुवंशिक अपसामान्यता के कारण यह गुण नष्ट हो जाए और वह स्व-कोशिकाओं को नष्ट करने लगे तो इसके परिणामस्वरूप क्या होगा?

- (1) सक्रिय प्रतिरक्षा
- (2) ऐलर्जी अनुक्रिया
- (3) निरोप अस्वीकार कर देना
- (4) स्वप्रतिरक्षा विकार

62. नाम-पद्धित कुछ विशेष सार्वजनिक मान्य नियमों द्वारा निर्धारित होती है। निम्नलिखित में से कौन सा एक कथन नाम-पद्धित के नियमों के विरुद्ध है ?

- नाम को जब हाथ से लिखते हैं तो उसे रेखांकित किया जाता है
- (2) जैविक नाम को किसी भी भाषा में लिखा जा सकता है
- (3) जैविक नाम में पहला शब्द वंश नाम और दूसरा शब्द जाति संकेत पद को प्रदर्शित करता है
- (4) नामों को लैटिन भाषा में और तिरछे अक्षरों में लिखा जाता है

63. ब्रायोफाइट और टेरिडोफाइट में नर युग्मक के अभिगमन के लिए किसकी आवश्यकता होती है?

- (1) जल
- (2) **पवन**
- (3) कीट
- (4) पक्षी

CODE

		4-			14-16 week.
	Eng	dish+Hindi	133		
CONTRACTOR DE	64.	In context of Amniocentesis, which of the following statement is incorrect	64	ਤ ੀ 1 ਸਫ਼	Y बवेधन के संदर्भ में, निम्नलिखित में से कौन-सा कथन In है?
The second		(1) It can be used for detection of Cleft palate. (2) It is usually done when a woman is between		(1)	इसे खंडतालु (क्लेफ्ट पैलेट) का पता लगाने के लिए प्रयुक्त किया जाता है।
		14 - 16 weeks pregnant. (3) It is used for prenatal sex determination.		(2)	यह आमतौर से तब किया जाता है जब स्त्री को 14 - 16 सप्ताह के बीच का गर्भ होता है।
-		(4) It can be used for detection of Down syndrome.		(3)	इसे प्रसवपूर्व लिंग-निर्धारण के लिए प्रयुक्त किया जाता है।
	65.	In the stomach, gastric acid is secreted by the: (1) acidic cells		(4)	इसे डाउन सिंड्रोम का पता लगाने के लिए प्रयुक्त किया जाता है।
l		(2) gastrin secreting cells	65.	31111	ाशय में जठर रस का स्नाव होता है :
ı	1	parietal cells	00.	(1)	अम्ल कोशिकाओं से
	6	peptic cells	1	(2)	जन्त काशिकाओं स गैस्ट्रिन का स्नाव करने वाली कोशिकाओं से
	L	pepul tens		(3)	भारदून का स्नाव करन वाला काशिकाओं स भित्तीय कोशिकाओं से
	66.	Spindle fibres attach on to:		(4)	पेप्टिक कोशिकाओं से
		(1) Kinetosome of the chromosome			W = 300
		(2) Telomere of the chromosome	66.	तर्कुर	न्पी तंतु लगते हैं :
	1	Kinetochore of the chromosome		(1)	
	V	(4) Centromere of the chromosome		(2)	9 &
				(3)	गुणसूत्र के काइनेटोकोर पर
	67.	Which is the National Aquatic Animal of India? (1) Sea - horse	-	(4)	गुणसूत्र के सूत्रकेन्द्र पर 🔾 💆
			67.		का राष्ट्रीय जलीय प्राणी कौन-सा है?
	C	Gangetic shark		(1)	समुद्री घोड़ा
		(3) River dolphin		(2)	गंगा की शार्क
		(4) Blue whale		(3)	नदी की डॉल्फ़िन
6	58.	Which one of the following cell organelles is enclosed by a single membrane?	68.	(4) निम्नि	ब्लू हवेल लेखित में से कौन सा कोशिकांग केवल ्रि कल कला से
		(1) Nuclei		धिरा ह	ग्रेता है?
		(2) Mitochondria *		(1)	केन्द्रक , १ (८)
		(3) Chloroplasts >		(2)	सूत्रकणिका
	i.	(4) Lysosomes		(3)	हरितलवक
		z, systemes		(4)	लयनकाय 💮
6	9.	The two polypeptides of human insulin are linked together by:	69.	मानव संयोजि	े 👉 इन्सुलिन के दो पॉलीपेप्टाइड आपस में किसके द्वारा त होते हैं ?
1		Disulphide bridges		(1)	त हात ह <i>ें</i> डाइसल्फाइड सेत्
		(2) Hydrogen bonds		(2)	ठाइसल्फाइड सतु हाइड्रोजन बन्ध
		(3) Phosphodiester bond		(3)	हारञ्जान वन्य फास्फोडाइएस्टर बन्ध
		(4) Covalent bond			महसंयोजी बन्ध
		ı		(*)	and the state of t

CODE

Question Paper - 1st May

Y English+Hindi 14 70. In which of the following, all three are 70. निम्नलिखित में से कौन सभी तीन बहत्तपोषक हैं? macronutrients? नाइट्रोजन, निकिल, फास्फोरस (1)Nitrogen, nickel, phosphorus बोरॉन, जिंक, मैंगनीज (2)Boron, zinc, manganese∕ (2) लौह, ताम्र, मोलीब्डेनम (3)(3)Iron, copper, molybdenum मोलीब्डेनम, मैग्नीशियम, मैंगनीज (4) Molybdenum, magnesium, manganese निम्नलिखित में से कौन सा कथन वाइरॉयड के विषय में गलत 71. Which of the following statements is wrong for viroids? (1)उनका आर.एन.ए. उच्च आण्विक भार वाला होता है Their RNA is of high molecular weight उनमें प्रोटीन आवरण का अभाव होता है (2)(2)They lack a protein coat ये विषाणुओं से अपेक्षाकृत छोटे होते हैं (3)(3)They are smaller than viruses (4)ये संक्रमण करते हैं (4)They cause infections 72. समवृत्ति संरचनाएं किस कारण उत्पन्न होती हैं? स्थिरकारी वरण (1)Analogous structures are a result of : अपसारी विकास के Stabilizing selection (2)(1) अभिसारी विकास के (3)(2) Divergent evolution साझा वंशपरंपरा (4) Convergent evolution Shared ancestry (4) 73. गलत कथन को चुनिए: LH लीडिंग कोशिकाओं से एंड्रोजन के स्राव को प्रेरित Select the incorrect statement: करता है। LH triggers secretion of androgens from the FSH सर्टोली कोशिकाओं को उद्दीपित करता है जो (2)Leydig cells. ビ शुक्राणुजनन में सहायता करता है। FSH stimulates the sertoli cells which help in (2)LH अंडाशय में अंडोत्सर्जन को प्रेरित करता है। spermiogenesis. LH और FSH पुटक-अवस्था के दौरान धीरे-धीरे घटता (4) LH triggers ovulation in ovary. जाता है। LH and FSH decrease gradually during the follicular phase. IN CUCK SP निम्नलिखित लक्षणों में से कौन-सा एक लक्षण पक्षियों और 74. स्तनधारियों दोनों में नहीं पाया जाता है? Which one of the following characteristics is not shared by birds and mammals? नियततापी प्रकृति (1)Warm blooded nature अस्थिभूत अंत:कंकाल (1) (2)Ossified endoskeleton L फेफडों द्वारा श्वसन (2)(3)(3)Breathing using lungs सजीवप्रजकता Viviparity (4) निम्नलिखित में से कौन सा कथन सत्य नहीं है? 75. कुछ सरिसुप, कुछ पादप जातियों में परागण करते हुए (1) Which of the following statements is not correct? बताये गये हैं। Some reptiles have also been reported as बहुत सारी जातियों के परागकण एक पृष्प के वर्तीकाग्र pollinators in some plant species. पर अंकरित हो सकते हैं परन्तु उसी जाति के परागकणों Pollen grains of many species can germinate on the stigma of a flower, but only one pollen की केवल एक पराग-नलिका वर्तिका में आगे बढ़ती tube of the same species grows into the style. है। Insects that consume pollen or nectar without कीट जो बिना परागण किये पराग या मकरंद को ग्रहण bringing about pollination are called करते हैं उन्हें पराग/मकरंद चोर कहते हैं। pollen/nectar robbers. परागकण अंकुरण तथा पराग-नलिका वृद्धि परागकण (4) Pollen germination and pollen tube growth तथा स्त्रीकेसर की पारस्परिक क्रिया के फलस्वरूप उत्पन्न are regulated by chemical components of

रासायनिक घटकों द्वारा नियंत्रित होती है।

pollen interacting with those of the pistil.

Question Paper - 1st May

English+Hindi

(1)

(2)

(3)

(4)

15

Seed formation without fertilization in flowering

76. पुष्पी पादपों में बिना निषेचन के बीज बनना निम्नलिखित में से कौन सी प्रक्रिया है?

- (1) असंगजनन
- (2) बीजाणुकजनन
- (3) मुकुलन
- (4) कायिक संकरण

77. Which of the following approaches does not give the defined action of contraceptive?

Somatic hybridization

plants involves the process of:

Apomixis

Sporulation

Budding

47	Vasectomy	prevents spermatogenesis
(2)	Barrier methods	prevent fertilization /
(3)	Intra uterine devices	increase phagocytosis of sperms, suppress sperm motility and fertilizing capacity of sperms
(4)	Hormonal contraceptives	Prevent/retard entry of sperms, prevent ovulation and fertilization

- 78. The amino acid Tryptophan is the precursor for the synthesis of:
 - (1) Cortisol and Cortisone

Melatonin and Serotonin

- (3) Thyroxine and Triiodothyronine
- (4) Estrogen and Progesterone
- A river with an inflow of domestic sewage rich in organic waste may result in:
 - (1) Death of fish due to lack of oxygen.
 - (2) Drying of the river very soon due to algal bloom.
 - (3) Increased population of aquatic food web organisms.
 - (4) An increased production of fish due to biodegradable nutrients.
 √y

7. निम्नलिखित उपागमों में से कौन-सा उपागम किसी गर्भनिरोधक की परिभाषित क्रिया नहीं बताता?

(1)	शुक्रवाहक उच्छेदन	शुक्राणुजनन नहीं होने देते।
(2)	रोध (बैरियर) विधियाँ	निषेचन गेकती हैं
(3)	अंतः गर्भाशयी युक्तियाँ	शुक्राणुओं की अक्षकोशिकता बढ़ा देती हैं, शुक्राणुओं की गतिशीलता एवं निषेचन क्षमता का मंदन करता है
(4)	हॉर्मोनी गर्भनिरोधक	शुक्राणुओं के प्रवेश को ग्रेकते हैं/ उसकी दर को धीमा कर देते हैं, अंडोत्सर्ग और निषेचन नहीं होने देते

- 78. अमीनो अम्ल ट्रिप्टोफैन किसके संश्लेषण के लिए पूर्वगामी होता है?
 - कोर्टिसोल और कोर्टिसोन
 - (2) मेलाटोनिन और सेरोटोनिन
 - (3) थायरॉक्सिन और ट्राईआयोडोथायरोनिन
 - (4) ईस्ट्रोजन और प्रोजेस्टेरॉन
- 79. एक नदी में जब कार्बनिक अपिशष्ट से भरपूर घरेलूवाहित मल बहकर गिरता हो, तो उसका परिणाम क्या होगा?
 - (1) ऑक्सीजन की कमी के कारण मछलियाँ मर जाएंगी।
 - (2) शैवाल प्रस्फुटन के कारण नदी जल्दी ही सूख जाऐगी।
 - (3) जलीय भोजन की समध्ट में वृद्धि हो जाएगी।
 - (4) बायोडिग्रेडेबल पोषण के कारण मछली का उत्पादन बढ़ जाएगा।

Question Paper - 1st May

Y

16

English+Hindi

- 80. Gause's principle of competitive exclusion states that:
 - (1) Larger organisms exclude smaller ones through competition
 - More abundant species will exclude the less abundant species through competition.
 - (3) Competition for the same resources excludes species having different food preferences.
 - No two species can occupy the same niche indefinitely for the same limiting resources.
- 81. Asthma may be attributed to:
 - (1) accumulation of fluid in the lungs 50
 - (2) bacterial infection of the lungs

 √
 - (3) allergic reaction of the mast cells in the lungs
 - (4) inflammation of the trachea

The standard petal of a papilionaceous corolla is also called:

- (1) Corona
- (2) Carina
- (3) Pappus
- (4) Vexillum
- 83. Which of the following is a restriction endonuclease?
 - (1) RNase

(2) Hind II

- (3) Protease
- (4) DNase I

It is much easier for a small animal to run uphill than for a large animal, because:

- The efficiency of muscles in large animals is less than in the small animals.
- (3) It is easier to carry a small body weight.
 (3) Smaller animals have a higher metabolic rate.
- (4) Small animals have a lower O₂ requirement.

- स्पर्धी अपवर्जन का गाँसे नियम कहता है कि :
 - अपेक्षाकृत बड़े आकार के जीव स्पर्धा द्वारा छोटे जंतुओं को बाहर निकाल देते हैं।
 - (2) अधिक संख्या में पाए जाने वाली स्पीशीज़ स्पर्धा द्वारा कम संख्या में पाए जाने वाली स्पीशीज़ को अपवर्जित कर देगी।
 - (3) समान संसाधनों के लिए स्पर्धा उस स्पीशीज़ को अपवर्जित कर देगी जो भिन्न प्रकार के भोजन पर भी जीवित रह सकती है।
 - (4) कोई भी दो स्पीशीज एक ही निकेत में असीमित अविध के लिए नहीं रह सकती क्योंकि सीमाकारी संसाधन समान ही होते हैं।
- 81. अस्थमा का कारण क्या होता है ?
 - (1) फेफड़ों के भीतर पानी एकत्रित हो जाना
 - (2) फेफ़ड़ों का जीवाणु द्वारा संक्रमण
 - (3) फेफ़ड़ों में मास्ट कोशिकाओं की एलर्जी-अभिक्रिया
 - (4) श्वासनली की शोध
- 82. पैंपिलिओनेसी वाले दलपुंज में मानक दल को अन्य किस नाम से जाना जाता है?
 - (1) कोरोना
 - (2) कैरिना
 - (3) पैपस
 - (4) वैक्सीलम
- 83. निम्नलिखित में से कौन सा एक, प्रतिबंधन एण्डोन्यूबिलएज है?
 - (1) आरएनएज
 - (2) **हिन्द II**
 - (3) प्रोटिएज
 - (4) डीएनएज I
- बड़े आकार के जंतुओं के मुकाबले में छोटे आकार के जंतुओं के लिए पहाड़ी पर चढ़ना आसान होता है क्योंकि :
 - छोटे जंतुओं के मुकाबले में बड़े जंतुओं की पेशियों की कार्यक्षमता कम होती है।
 - (2) छोटे शरीर के भार को ऊपर ले जाना अपेक्षाकृत आसान होता है।
 - छोटे आकार वाले पशुओं की उपापचयी दर अपेक्षाकृत अधिक होती है।
 - छोटे आकार के जंतुओं की O₂ आवश्यकता अपेक्षाकृत कम होती है।

Question Paper - 1st May

English+Hindi

17

85.

Following are the two statements regarding the origin of life:

- (a) The earliest organisms that appeared on the earth were non-green and presumably anaerobes.
- (b) The first autotrophic organisms were the chemoautotrophs that never released oxygen.

Of the above statements which one of the following options is correct?

- (1) Both (a) and (b) are false.
- (2) (a) is correct but (b) is false.
- (3) (b) is correct but (a) is false.
- (4) Both (a) and (b) are correct.
- A cell at telophase stage is observed by a student in a plant brought from the field. He tells his teacher that this cell is not like other cells at telophase stage. There is no formation of cell plate and thus the cell is containing more number of chromosomes as compared to other dividing cells. This would result in:
 - (1) Polyteny
 - (2) Aneuploidy
- Polyploidy
 - Somaclonal variation
- Depletion of which gas in the atmosphere can lead to an increased incidence of skin cancers:
 - (1) Methane
 - (2) Nitrous oxide
 - (3) Ozone
 - (4) Ammonia
- 88. Joint Forest Management Concept was introduced in India during:
 - (1) 1990s
 - (2) 1960s
 - (3) 1970s
 - (4) 1980s
- 89. Which one of the following is the starter codon?
 - (1) , UAG
 - (2) AUG
 - (3) UGA
 - (4) UAA

90.

The term ecosystem was coined by:

- (1) E. Warming →
- (2) E.P. Odum ,
- (3) A.G. Tansley
 - (4) E. Haeckel

ज़ीवन की उत्पत्ति के संदर्भ में दो कथन दिए गए हैं :

- पृथ्वी पर प्रकट होने वाले आरंभिकत्तम जीव हरे नहीं थे और संभवतया अवायवी थे।
- (b) प्रथम प्रकट होने वाले स्वपोषी जीव रसोस्वपोषी थे जिन्होंने ऑक्सीजन का उत्सर्जन नहीं किया।

उपरोक्त कथनों में से कौन-सा निम्नलिखित कथन सही है?

- (1) (a) और (b) दोनों ही गलत हैं।
- (2) (a) सही है लेकिन (b) गलत है।
- (3) (b) सही है लेकिन (a) गलत है।
- (4) (a) और (b) दोनों ही सही हैं।
- 86. खेत से लाये गए एक पादप कोशिका में एक विद्यार्थी द्वारा अंत्यावस्था देखी गयी। वह अपने शिक्षक से कहता है कि यह कोशिका अन्त्यावस्था पर अन्य कोशिकाओं से भिन्न है। इसमें कोशिका प्लेट नहीं बनती और इस कारण इस कोशिका में अन्य विभाजन वाली कोशिकाओं की अपेक्षा अधिक गुणसूत्र हैं। इसका परिणाम क्या होगा?
 - (1) बहुपट्टता
 - (2) असुगुणिता
 - (3) बहुगुणिता
 - (4) कायक्लोनी विभिन्नता
- 87. वातावरण में किस गैस की कमी होने पर त्वचा के कैंसर के अवसर बढ़ जाएंगे?
 - (1) मीथेन
 - (2) नाइट्रस ऑक्साइड
 - (3) ओज़ोन
 - (4) अमोनिया
- 88. संयुक्त वन प्रबन्धन की धारणा भारत में किस दौरान प्रस्तावित की गयी थी?
 - (1) 1990
 - (2) 1960
 - (3) 1970
 - (4) 1980
- 89. निम्नलिखित में से कौन सा एक प्रारम्भक प्रकृट है?
 - (1) UAG
 - (2) AUG
 - (3) UGA
 - (4) UAA
- 90. इकोसिस्टम (पारितन्त्र) शब्द सबसे पहले किसने बनाया था?
 - ई. वार्मिंग
 - (2) ई.पी. ओडम
 - (3) ए.जी. टांसले
 - (4) ई. हिकल

Y

AIPMT 2016

CODE

English+Hindi

0.51 W

0.67 W

0.76 W

Question Paper - 1st May

		10	argiotti ilioi
91.	What is the minimum velocity with which a body of mass m must enter a vertical loop of radius R so that it can complete the loop.? (1) $\sqrt{5gR}$ (2) \sqrt{gR} (3) $\sqrt{2gR}$ (4) $\sqrt{3gR}$	91.	R त्रिज्या के किसी ऊर्ध्वाधर पाश (लूप) में m द्रव्यमान के किसी पिण्ड को किस निम्नतम वेग से प्रवेश करना चाहिए कि वह पाश को पूर्ण कर सके ? $(1) \qquad \sqrt{5gR}$ $(2) \qquad \sqrt{gR}$ $(3) \qquad \sqrt{2gR}$ $(4) \qquad \sqrt{3gR}$
92.	If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vectors, the angle between these vectors is: (2) 0° (3) 90° (4) 45°	92. 3/	यदि दो सदिशों के योग का परिमाण उन दो सदिशों के अन्तर के परिमाण के बराबर है, तो इन सदिशों के बीच कोण है : (1) 180° (2) 0° (3) 90° (4) 45°
93.	At what height from the surface of earth the gravitation potential and the value of g are -5.4×10 ⁷ J kg ⁻² and 6.0 ms ⁻² respectively? Take the radius of earth as 6400 km: (1) 2000 km (2) 2600 km (3) 1600 km (4) 1400 km	93.	पृथ्वी के पृष्ठ से कितनी ऊँचाई पर गुरुत्वीय विभव और गुरुत्वीय त्वरण g के मान क्रमश: $-5.4 \times 10^7 \mathrm{J kg^{-2}}$ और $6.0 \mathrm{ms^{-2}}$ होते हैं ? पृथ्वी की त्रिज्या $6400 \mathrm{fa}$.मी. लीजिए: (1) 2000 कि.मी. (2) 2600 कि.मी. (3) 1600 कि.मी. (4) 1400 कि.मी.
(94.)	A long solenoid has 1000 turns. When a current of 4A flows through it, the magnetic flux linked with each turn of the solenoid is 4×10^{-3} Wb. The self-inductance of the solenoid is: (1) 1 H (2) 4 H (3) 3 H (4) 2 H	94.	किसी लम्बी परिनालिका में फेरों की संख्या 1000 है। जब इस परिनालिका से 4A धारा प्रवाहित होती है, तब इस परिनालिका के प्रत्येक फेरे से संबद्ध चुम्बकीय फ्लक्स 4×10 ⁻³ Wb होता है। इस परिनालिका का स्व-प्रेरकत्व है: (1) 1 H (2) 4 H (3) 3 H (4) 2 H
95.	An inductor 20mH , a capacitor $50 \mu\text{F}$ and a resistor 40Ω are connected in series across a source of emf $V = 10 \sin 340 \text{t}$. The power loss in A.C. circuit is : (1) 0.89W (2) 0.51W	95.	किसी स्रोत जिसका emf, $V=10 \sin 340 t$ है, से श्रेणी में 20mH का प्रेरक, $50 \mu\text{F}$ का संधारित्र तथा 40Ω का प्रतिरोधक संयोजित है। इस प्रत्यावर्ती धारा परिपथ में शक्ति क्षय है: $(1) \qquad 0.89 \text{W}$

0.67 W

0.76 W

PMT 2016

CODE

Question Paper - 1st May

English+Hindi

Two identical charged spheres suspended from a common point by two massless strings of lengths l, are initially at a distance d (d < < 1) apart because of their mutual repulsion. The charges begin to leak from both the spheres at a constant rate. As a result, the spheres approach each other with a velocity v. Then v varies as a function of the distance x between the spheres, as:

(2)
$$v \propto x^{\frac{1}{2}}$$

$$(4) \quad v \propto x^{-\frac{1}{2}}$$

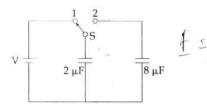
वेग ए का विचरण किस रूप में होता है?

(4)

angular velocity

किसी उभयीनिष्ठ बिन्दु से, लम्बाई । की दो द्रव्यमानहीन डोरियों

से निलंबित, दो सर्वसम आवेशित गोले, अन्योन्य प्रतिकर्षण के


कारण, आरम्भ में एक-दूसरे से d (d < < 1) दूरी पर हैं। दोनों

ही गोलों से एक नियत दर से आवेशों का क्षरण आरम्भ होता है,

और इसके परिणामस्वरूप गोले एक दूसरे की ओर वेग v से

आते हैं। तब गोलों के बीच की दूरी, x के फलन के रूप में

97.

A capacitor of 2 µF is charged as shown in the diagram. When the switch S is turned to position 2, the percentage of its stored energy dissipated is:

- 80% (1)
- 0% (2)

(3) 20%

A particle moves so that its position vector is given by $\vec{r} = \cos \omega t \hat{x} + \sin \omega t \hat{y}$. Where ω is a constant.

Which of the following is true?

- Velocity is perpendicular to r and acceleration is directed away from the origin.
 - (2)Velocity and acceleration both are perpendicular to r.
 - (3)Velocity and acceleration both are parallel
 - Velocity is perpendicular to r and acceleration is directed towards the origin.

आरेख में दर्शाए अनुसार 2 µF धारिता के किसी संधारित्र का आवेशन किया गया है। जब स्विच S को स्थिति 2 पर घुमाया जाता है, तो इसमें संचित ऊर्जा का प्रतिशत क्षय होन्

80% 0%

20%

75%

(2)

(3)

(4)

कोई कण इस प्रकार गमन करता है कि उसका स्थिति सदिश $\vec{r} = \cos \omega t \hat{x} + \sin \omega t \hat{y}$ द्वारा निरूपित किया गया है. यहाँ ω एक नियतांक है।

निम्नलिखित में से कौन सा कथन सत्य है?

- वेग \overrightarrow{r} के लम्बवत है तथा त्वरण मूल बिन्द से दूर की ओर निदर्शित है।
- वेग और त्वरण दोनों ही 🕝 के लम्बवत हैं। (2)
- वेग और त्वरण दोनों ही 🕝 के समान्तर हैं। (3)
- वेग \overrightarrow{r} के लम्बवत है तथा त्वरण मूल बिन्द की ओर (4) निदर्शित है।


Y

AIPMT 2016

CODE

English+Hindi

Question Paper - 1st May

1011 1 1 1 0 20 h


99. From a disc of radius R and mass M, a circular hole of diameter R, whose rim passes through the centre is cut. What is the moment of inertia of the remaining part of the disc about a perpendicular axis, passing through the centre?

9 MB²/32 15 MR²/32

3) 13 MR²/32

(4) 11 MR²/32

100. The ratio of escape velocity at earth (v_e) to the escape velocity at a planet (v_p) whose radius and mean density are twice as that of earth is:

101. A potentiometer wire is 100 cm long and a constant potential difference is maintained across it. Two cells are connected in series first to support one another and then in opposite direction. The balance points are obtained at 50 cm and 10 cm from the positive end of the wire in the two cases. The ratio of emf's is:

(4) 3:4

A siren emitting a sound of frequency 800 Hz moves away from an observer towards a cliff at a speed of 15 ms⁻¹. Then, the frequency of sound that the observer hears in the echo reflected from the cliff is:

(Take velocity of sound in air = 330 ms^{-1})

(1) 885 Hz

(2) 765 Hz

(3) 800 Hz

(4) 838 Hz

99. द्रव्यमान M तथा त्रिज्या R की किसी डिस्क से R व्यास का कोई वृत्ताकार छिद्र इस प्रकार काटा जाता है कि उसकी नेमि डिस्क के केन्द्र से गुजरे। डिस्क के शेष भाग का, डिस्क के लम्बवत् उसके केन्द्र से गुजरने वाले अक्ष के परित: जड्त्व आधूर्ण क्या है?

(1) 9 MR²/32

(2) 15 MR²/32

(3) 13 MR²/32

(4) 11 MR²/32

100. पृथ्वी पर पलायन वेग (v_p) तथा उस ग्रह पर पलायन वेग (v_p) में क्या अनुपात होगा, जिसकी क्रिज्या और औसत घनत्व पृथ्वी की तुलना में दो गुने हैं?

(1) $1:\sqrt{2}$ (2) 1:2(3) $1:2\sqrt{2}$ (4) 1:4

101. किसी विभवमापी के तार की लम्बाई 100 से.मी. है तथा इसके सिरों के बीच कोई नियत विभवान्तर बनाए रखा गया है। दो सेलों को श्रेणीक्रम में पहले एक दूसरे की सहायता करते हुए और फिर एक-दूसरे की विपरीत दिशाओं में संयोजित किया गया है। इन दोनों प्रकरणों में शून्य-विक्षेप स्थिति तार के धनात्मक सिरे से 50 से.मी. और 10 से.मी. दूरी पर प्राप्त होती है। दोनों सेलों की emf का अनुपात है:

(1) 3:2 (2) 5:14 (3) 5:4 (4) 3:4

102. 800 Hz आवृत्ति की ध्विन उत्पन्न करने वाला कोई सायरन किसी प्रेक्षक से एक चट्टान की ओर $15~\mathrm{ms}^{-1}$ की चाल से गितमान है। तब उस ध्विन की आवृत्ति, जिसे चट्टान से परावर्तित प्रतिध्विन के रूप में वह प्रेक्षक सुनता है, क्या होगी? (वायु में ध्विन की चाल $=330~\mathrm{ms}^{-1}$ लीजिए)

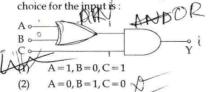
(1) 885 Hz

(2) 765 Hz

(3) 800 Hz

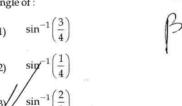
(4) 838 Hz

IPMT 2016


CODE

Question Paper - 1st May

English+Hindi

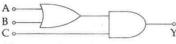

21

103. To get output I for the following circuit, the correct | 103. नीचे दिए गए परिपथ में, निर्गत 1 प्राप्त करने के लिए निवेश का

104. In a diffraction pattern due to a single slit of width 'a', the first minimum is observed at an angle 30° when light of wavelength 5000 Å is incident on the slit. The first secondary maximum is observed at an

angle of:

When a metallic surface is illuminated with radiation of wavelength λ , the stopping potential is V. If the same surface is illuminated with radiation

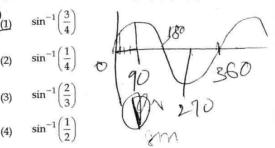

> of wavelength 2λ , the stopping potential is $\frac{v}{4}$. The threshold wavelength for the metallic surface is:

(1)
$$3\lambda$$

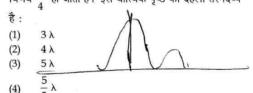
(2) 4λ
(3) 5λ
(4) $\frac{5}{2}\lambda$

When an α -particle of mass 'm' moving with velocity 'v' bombards on a heavy nucleus of charge 'Ze', its distance of closest approach from the nucleus depends on m as:

सही चयन है :


(1)A = 1, B = 0, C = 1

(2)A = 0, B = 1, C = 0


A = 1, B = 0, C = 0(3)

A = 1, B = 1, C = 0(4)

104. जब चौड़ाई 'a' की किसी एकल झिरी पर 5000 Å तरंगदैर्घ्य का प्रकाश आपतन करता है, तो झिरी के कारण उत्पन्न विवर्तन पैटर्न में 30° के कोण पर पहला निम्निष्ठ दिखाई देता है। पहला द्वितीयक उच्चिष्ठ जिस कोण पर दिखाई देगा, वह है :

जब किसी धात्विक पुष्ठ को तरंगदैर्घ्य λ के विकिरणों से प्रदीप्त किया जाता है, तो निरोधी विभव V है। यदि इसी पृष्ठ को तरंगदैर्घ्य 2λ के विकिरणों से प्रदीप्त किया जाए, तो निरोधी $rac{V}{4}$ हो जाता है। इस धात्विक पृष्ठ की देहली तरंगदैर्घ्य

जब द्रव्यमान 'm' तथा वेग 'v' से गतिमान कोई α-कण 'Ze' आवेश के किसी भारी नाभिक पर बमबारी करता है, तो उसकी नाभिक से निकटतम उपगमन की दूरी, m पर इस प्रकार निर्भर करती है :

> (1) m

(3)

Y

AIPMT 201

Question Paper - 1st May

22

M2 - enlong & a

English+Hindi

- 107. Match the corresponding entries of column 1 with column 2. [Where m is the magnification produced by the mirror]
 - Column 1 Column 2

(A) m = -2(B)

 $D \rightarrow c$ and d

Convex mirror (a)

- (b) Concave mirror
- (C) m = +2(G) Real image
- Virtual image $A \rightarrow c$, and d; $B \rightarrow b$ and d; $C \rightarrow b$ and c;
- D a and d $A \rightarrow b$ and c; $B \rightarrow b$ and c $\not\sim C \rightarrow b$ and d;
- $D \rightarrow a$ and d $A \rightarrow a$ and $c \not\sim B \rightarrow a$ and d; $C \rightarrow a$ and b;
- $A \rightarrow a$ and d; $B \rightarrow b$ and c; $C \rightarrow b$ and d; (4) $D \rightarrow b$ and c
- A particle of mass 10 g moves along a circle of radius 6.4 cm with a constant tangential acceleration. What is the magnitude of this acceleration if the kinetic energy of the particle becomes equal to 8×10^{-4} J by the end of the second revolution after the beginning of the motion?
 - $0.2 \, \text{m/s}^2$ (1)
 - (2) 0.1 m/s^2
- (3) 0.15 m/s^2
- 0.18 m/s^2 (4)
- A small signal voltage $V(t) = V_0 \sin \omega t$ is applied across an ideal capacitor C:
 - Current I(t) leads voltage V(t) by 180°. (1)
 - (2) Current I(t), lags voltage V(t) by 90°.
 - Over a full cycle the capacitor C does not (3)consume any energy from the voltage source.
 - (4) Current I(t) is in phase with voltage V(t).
- 110. A disk and a sphere of same radius but different masses roll off on two inclined planes of the same altitude and length. Which one of the two objects gets to the bottom of the plane first? \(\int\)
 - (1) Depends on their masses
 - (2)Disk Sphere
 - Both reach at the same time

107. कॉलम-1 की संगत प्रविष्टियों का मिलान कॉलम-2 की प्रविष्टियों से कीजिए। यहाँ 'm' दर्पणों द्वारा उत्पन्न आवर्धन

हैं।		
कॉलम - 1	कॉलम - 2	

- (A) m = -2
 - अवतल दर्पण
- (B) (C)
- वास्तविक प्रतिबिम्ब (c)

उत्तल दर्पण

- (D)
- आभासी प्रतिबिम्ब (d)
- (1) $A \rightarrow c \vec{q} d;$ $B \rightarrow b \ \overline{q} \ d; \ C \rightarrow b \ \overline{q} \ c;$ D→a वd
- $A \rightarrow b \ \overline{q} \ c$; $B \rightarrow b \ \overline{a} \ c; \ C \rightarrow b \ \overline{a} \ d;$ D→a ad
- $A \rightarrow a \ \overline{q} \ c$; $B \rightarrow a \ \overline{q} \ d; \ C \rightarrow a \ \overline{q} \ b;$ D→c व d
- $A \rightarrow a \ \overline{a} \ d$; $B \rightarrow b \ \overline{a} \ c$; $C \rightarrow b \ \overline{a} \ d$; D→bवc
- 108. 10 g द्रव्यमान का कोई कण 6.4 से.मी. लम्बी क्रिज्या के वृत्त के अनुदिश किसी नियत स्पर्श-रेखीय त्वरण से गृति करता है। यदि गति आरम्भ करने के पश्चात दो परिक्रमाएं पूरी करने पर कण की गतिज ऊर्जा 8×10-41 हो जाती है, तो इस त्वरण का परिमाण क्या है?
 - 0.2 m/s^2 (1)
 - (2)0.1 m/s
 - (3) 0.15 m/s^2
 - 0.18 m/s^2 (4)
- 109. क्रोई/लघु सिग्नल वोल्टता $V(t) = V_0 \sin \omega t$ किसी आदर्श संभ्रारित्र C के सिरों पर अनुप्रयुक्त की गयी है :
 - धारा I(t), वोल्टता V(t) से 180° अग्र है।
 - (2) धारा I(t), वोल्टता V(t) से 90° पश्च है।
 - एक पूर्ण चक्र में संधारित्र C वोल्टता स्रोत से कोई ऊर्जा (3)उपभुक्त नहीं करता।
- √ (4) √ शारा (t) कोल्टता V(t) की कला में है।
- 110. कोई डिस्क और कोई गोला, जिनकी त्रिज्याएं समान परन्तु द्रव्यमान भिन्न हैं, समान उन्नतांश और लम्बाई के दो आनत समतलों पर लुढ़कते हैं। इन दोनों पिण्डों में से तली तक पहले कौन पहुँचेगा ?
 - इनके द्रव्यमानों पर निर्भर करता है (1)
 - डिस्क (2)
 - (3)गोला
 - दोनों एक ही समय पहुँचेंगे (4)

IPMT 2016

Question Paper - 1st May

Me le W2 H2.

English+Hindi

111. Coefficient of linear expansion of brass and steel rods are α_1 and α_2 . Lengths of brass and steel rods are l_1 and l_2 respectively. If (l_2-l_1) is maintained same at all temperatures, which one of the following relations holds good?

$$(1) \quad \alpha_1 l_1 = \alpha_2 l_2$$

(2)
$$\alpha_1 l_2 = \alpha_2 l_1 \nearrow 0$$

(3)
$$\alpha_1 l_2^2 = \alpha_2 l_1^2$$

$$(4) \qquad \alpha_1^2 l_2 = \alpha_2^2 l_1 \quad \lambda$$

112. A astronomical telescope has objective and eyepiece of focal lengths 40 cm and 4 cm respectively. To view an object 200 cm away from the objective, the lenses must be separated by a distance:

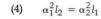
50.0 cm (4)

113. A uniform circular disc of radius 50 cm at rest is free to turn about an axis which is perpendicular to its plane and passes through its centre. It is subjected to a torque which produces a constant angular acceleration of 2.0 rad s⁻². Its net acceleration in ms⁻² at the end of 2.0 s is approximately:

3.0

7-1 W

- (2)8.0
- 7.0

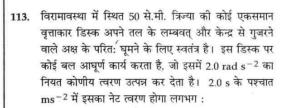


A refrigerator works between 4°C and 30°C. It is required to remove 600 calories of heat every second in order to keep the temperature of the refrigerated space constant. The power required is : (Take 1 cal = 4.2 Joules)

- 2365 W (1)
- 2.365 W (2)
- (3)23.65 W
- (4)236.5 W

111. पीतल (ब्रास) और स्टील की छड़ों के अनुदैर्घ्य प्रसार के गुणांक क्रमशः α_1 और α_2 हैं। पीतल और स्टील की छड़ों की लम्बाइयां क्रमशः l_1 और l_2 हैं। यदि (l_2-l_1) को सभी तापीं के लिए समान बनाया जाये, तब नीचे दिए गए संबंधों में से कौन-सा सत्य है ?

- $(1) \qquad \alpha_1 l_1 = \alpha_2 l_2$



112. किसी खगोलीय दुरबीन के अभिदृश्यक और नेत्रिका की फोकस दूरियां क्रमश: 40 से.मी. और 4 से.मी. हैं। अभिदृश्यक से 200 से.मी. दूर स्थित किसी बिम्ब को देखने के लिए, दोनों

लेंसों के बीच की दूरी होनी चाहिए :

54.0 से.मी.

- 37.3 से.मी. (2)
- 46.0 से.मी. (3)
- 50.0 से.मी. (4)

- 3.0 (1)
- (2)8.0
- (3)7.0
- 6.0 (4)

कोई रेफ्रिजरेटर 4°C और 30°C के बीच कार्य करता है। प्रशीतन किए जाने वाले स्थान का ताप नियत रखने के लिए 600 कैलोरी ऊष्मा को प्रति सेकण्ड बाहर निकालना आवश्यक होता है। इसके लिए आवश्यक शक्ति चाहिए :

(1 cal = 4.2 Joules लीजिए)

- 2365 W (1)
- 2.365 W (2)
- 23.65 W
- (4) 236.5 W

Y

AIPMT 2016

CODE

Question Paper - 1st May

at const remy

English+Hind

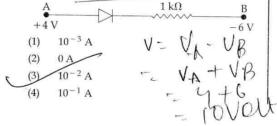
115. A gas is compressed isothermally to half its initial volume. The same gas is compressed separately through an adiabatic process until its volume is again reduced to half. Then:

 Which of the case (whether compression through isothermal or through adiabatic process) requires more work will depend upon the atomicity of the gas.

(2) Compressing the gas isothermally will require more work to be done.

(3) Compressing the gas through adiabatic process will require more work to be done.

(4) Compressing the gas isothermally or adiabatically will require the same amount of work.


116. The intensity at the maximum in a Young's double slit experiment is I_0 . Distance between two slits is $d=5\lambda$, where λ is the wavelength of light used in the experiment. What will be the intensity in front of one of the slits on the screen placed at a distance D=10 d?

117. Two non-mixing liquids of densities β and no (n > 1) are put in a container. The height-of each liquid is h. A solid cylinder of length L and density d is put in this container. The cylinder floats with its axis vertical and length pL (p < 1) in the denser liquid. The density d is equal to:

(1) $\{1+(n-1)p\}\rho$ (2) $\{1+(n+1)p\}\rho$ $\{1+(n+1)p\}\rho$ $\{2+(n+1)p\}\rho$

 $\{2+(n-1)p\}\rho$

118. Consider the junction diode as ideal. The value of current flowing through AB is:

115. किसी गैस को समतापीय रूप से उसके आधे आयतन तब संपीडित किया जाता है। इसी गैस को पृथक रूप से रुद्धोप प्रक्रिया द्वारा उसके आधे आयतन तक संपीडित किया जाता है तब :

> (1) चाहे समतापीय प्रक्रिया द्वारा संपीडित करें अथवा रुद्धोष्म प्रक्रिया द्वारा संपीडित करें, किस प्रकरण में अधिक कार्य करने की आवश्यकता होगी, यह गैस की परमाणुकता पर निर्भर करेगा।

> (2) गैस को समतापीय प्रक्रिया द्वारा संपीडित करने में अधिक कार्य करने की आवश्यकता होगी।

> (3) गैस को रुद्धोष्म प्रक्रिया द्वारा संपीडित करने में अधिक कार्य करने की आवश्यकता होगी।

> गैस को समतापीय प्रक्रिया अथवा रुद्धोष्म प्रक्रिया दोनों में ही समान कार्य करने की आवश्यकता होगी।

116. यंग के किसी द्वि झिरी प्रयोग में उच्चिष्ठ की तीव्रता I_0 है। दोनों झिरियों के बीच की दूरी $d=5\lambda$ है, यहाँ λ प्रयोग में उपयोग किए गए प्रकाश की तरंगदैष्यं है। किसी एक झिरी के सामने दूरी D=10 d पर स्थित पर्दे पर तीव्रता क्या होगी?

(1) $\frac{I_0}{2}$

(2) I₀

(3) $\frac{I_0}{4}$ (4) $\frac{3}{2}$ In

117. एक दूसरे में मिश्रित न होने वाले दो द्रव, जिनके घनत्व ρ तथा np(n > 1) हैं, किसी पात्र में भरें हैं। प्रत्येक द्रव की ऊँचाई h है। लम्बाई L और घनत्व d के किसी बेलन को इस पात्र में रखा जाता है। यह बेलन पात्र में इस प्रकार तैरता है, कि इसका अक्ष ऊर्ध्वाधर रहता है तथा इसकी लम्बाई pL (p < 1) सघन द्रव में होती है। घनत्व d का मान है:</p>

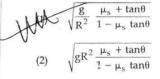
(1) $\{1 + (n-1)p\}\rho$

(2) $\{1 + (n+1)p\}\rho$

(3) $\{2 + (n+1)p\}\rho$ (4) $\{2 + (n-1)p\}\rho$ 1= V/p

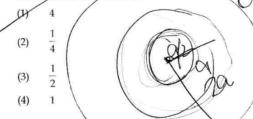
118. संधि डायोड को आदर्श मानकर विचार कींजिए। AB से प्रवाहित धारा का मान है :

PMT 2016


Question Paper - 1st May

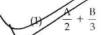
English+Hindi

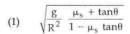
25

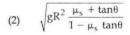

119. A car is negotiating a curved road of radius R. The road is banked at an angle θ . The coefficient of friction between the tyres of the car and the road is μ_s . The maximum safe velocity on this road is:

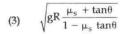
(3)
$$\sqrt{gR \frac{\mu_s + \tan\theta}{1 - \mu_s \tan\theta}}$$
(4)
$$\sqrt{\frac{g}{R} \frac{\mu_s + \tan\theta}{1 - \mu_s \tan\theta}}$$

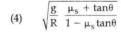
120. A long straight wire of radius a carries a steady current I. The current is uniformly distributed over its cross - section. The ratio of the magnetic fields

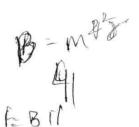

> B and B', at radial distances a and 2a respectively, from the axis of the wire is:

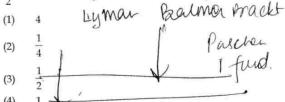

121. Given the value of Rydberg constant is 107 m 1, the wave number of the last line of the Balmer series in hydrogen spectrum will be:


- $2.5 \times 10^7 \text{ m}^{-1}$ (1)
- $0.025 \times 10^4 \text{ m}^{-1}$ (2)
- $0.8 \times 10^7 \text{ m}^{-1}$ (3)
- $0.25 \times 10^7 \text{ m}^{-1}$

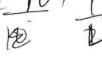

If the velocity of a particle is $v = At + Bt^2$, where A and B are constants, then the distance travelled by it between Is and 2s is :




119. कोई कार त्रिज्या R की विक्रत सड़क पर गतिमान है। यह सड़क कोण θ पर झुकी है। कार के टायरों और सड़क के बीच घर्षण-गुणांक 🏨 है। इस सड़क पर कार का अधिकतम सुरक्षा



120. त्रिज्या a के किसी लम्बे सीधे तार से कोई स्थायी धारा I प्रवाहित हो रही है। इस तार की अनुप्रस्थ काट पर धारा एकसमान रूप से वितरित है। तार के अक्ष से ऋिन्य दूरियों


और 2a पर क्रमश: चुम्बकीय क्षेत्रों B और B' का अनुपात है:

- रिडबर्ग नियतांक का मान $10^7 \, \mathrm{m}^{-1}$ दिया गया है, हाइड्रोजन स्पेक्टम की बामर श्रेणी की अंतिम लाइन की तरंग संख्या
 - (1) $2.5 \times 10^7 \text{ m}^{-1}$
 - $0.025 \times 10^4 \text{ m}^{-1}$ $0.5 \times 10^7 \text{ m}^{-1}$ (3)

स्थिरांक हैं, तो इस कण द्वारा 1s और 2s के बीच चली गयी

PMT 201

CODE

Question Paper - 1st May

Y

76

123. The angle of incidence for a ray of light at a refracting surface of a prism is 45°. The angle of prism is 60° If the ray suffers minimum deviation through the prism, the angle of minimum deviation and refractive index of the material of the prism respectively, are:

- (2)
- (3)

The molecules of a given mass of a gas have r.m.s. velocity of 200 ms $^{-1}$ at 27°C and 1.0 × 10 5 Nm $^{-2}$ pressure. When the temperature and pressure of the gas are respectively, 127°C and 0.05×10^5 Nm $^{-2}$, the r.m.s. velocity of its molecules in ms^{-1} is:

- 100 (1)3
- (2) $100\sqrt{2}$
- 400 (3) $\sqrt{3}$
- $100\sqrt{2}$ (4)
- An air column, closed at one end and open at the other, resonates with a tuning fork when the smallest length of the column is 50 cm. The next larger length of the column resonating with the same tuning fork
 - (1) 200 cm
 - (2)66.7 cm
 - (3)100 cm
 - (4)150 cm

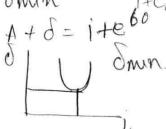
The magnetic susceptibility is negative for:

- paramagnetic and ferromagnetic materials (1)
- (2) diamagnetic material only

paramagnetic material only

(4)ferromagnetic material only 123.

English+Hindi


प्रिज्म के किसी अपवर्तक पृष्ठ पर किसी प्रकाश किरण के लिए आपतन कोण का मान 45° है। प्रिज्म कोण का मान 60° है। यदि यह किरण प्रिज्म से न्यूनतम विचलित होती है, तो न्यूनतम विचलन कोण तथा प्रिज्म के पदार्थ का अपवर्तनांक क्रमशः हैं :

- 30°; √2

124. ताप 27°C और दाब $1.0 \times 10^5 \ Nm^{-2}$ पर किसी दिए गए द्रव्यमान की गैस के अणुओं का वर्ग माध्य मूल (r.m.s.) वेग $200~{
m ms}^{-1}$ है। जब इस गैस के ताप और दाब क्रमशः $127^{\circ}{
m C}$ और $0.05 \times 10^5 \,\mathrm{Nm}^{-2}$ हैं, तो ms^{-1} में इस गैस के अणुओं का वर्ग माध्य मूल वेस है :

- 100 (1)
- (2) $100\sqrt{2}$
- 400 (3) $\sqrt{3}$
- $100\sqrt{2}$

125. एक सिरे पर बन्द तथा दूसरे सिरे पर खुला कोई वाय स्तम्भ किसी स्वरित्र द्विभुज के साथ उस समय अनुनाद करता है जब इस वायु स्तम्भ की कम-से-कम लम्बाई 50 से.मी. होती है। इसी स्वरित्र द्विभुज के साथ अनुनाद करने वाली स्तम्भ की अगली बडी लम्बाई है :

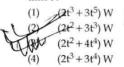
- 200 से.मी. (1)
- 66.7 से.मी.
- (3) 100 से.मी.
- 150 से.मी. (4)

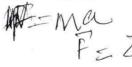
चुम्बकीय सुग्राहिता ऋणात्मक होती है : 126.

- (1) अनुचुम्बकीय और लौह-चुम्बकीय पदार्थों के लिए
- केवल प्रतिचुम्बकीय पदार्थ के लिए (2)
- (3)केवल अनुचुम्बकीय पदार्थ के लिए
- केवल लौह-चुम्बकीय पदार्थ के लिए (4)

CODE

Question Paper - 1st May

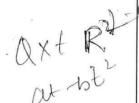

English+Hindi


127. An electron of mass m and a photon have same energy E. The ratio of de-broglie wavelengths associated with them is:

- $(1) \qquad \frac{1}{c} \left(\frac{2m}{E}\right)^{\frac{1}{2}}$
- (2) $\frac{1}{c} \left(\frac{E}{2m} \right)^{\frac{1}{2}}$
- (3) $\left(\frac{E}{2m}\right)^{\frac{1}{2}}$
 - (4) $c(2mE)^{\frac{1}{2}}$

(c being velocity of light)

128. A body of mass 1 kg begins to move under the action of a time dependent force $\vec{F} = (2t \hat{i} + 3t^2 \hat{j})N$, where \hat{i} and \hat{j} are unit vectors along x and y axis. What power will be developed by the force at the time t^2



129. The charge flowing through a resistance R varies with time $\{as Q = at - bt^2\}$ where a and b are positive constants. The total heat produced in R is:

- $(1) \qquad \frac{a^3 R}{b}$
- $(2) \qquad \frac{a^3 R}{6 b}$
- $(3) \qquad \frac{a^3 R}{3b}$

(4) $\frac{a^3R}{2b}$

A npn transistor is connected in common emitter configuration in a given amplifier. A load resistance of $800\,\Omega$ is connected in the collector circuit and the voltage drop across it is $0.8\,$ V. If the current amplification factor is 0.96 and the input resistance of the circuit is $192\,\Omega$, the voltage gain and the power gain of the amplifier will respectively be:

- (1) 4, 3.69
- (2) 4, 3.84
- (3) 3.69, 3.84
- (4) 4, 4

A = E - hC

,

127. द्रव्यमान m के इलेक्ट्रॉन तथा किसी फोटॉन की ऊर्जाएं E एकसमान हैं। इनसे संबद्ध दे-ब्राग्ली तरंगदैर्घ्यों का अनुपात है:

- (1) $\frac{1}{c} \left(\frac{2m}{E}\right)^{\frac{1}{2}}$
- (2) $\frac{1}{c} \left(\frac{E}{2m}\right)^{\frac{1}{2}}$
- (3) $\left(\frac{E}{2m}\right)^{\frac{1}{2}}$
- (4) $c(2mE)^{\frac{1}{2}}$

(यहाँ c प्रकाश का वेग है।)

- 128. 1 kg द्रव्यमान का कोई पिण्ड किसी कालाश्रित बल $\vec{F} = (2t\,\hat{i}\, + 3t^2\,\hat{j}\,)N$, यहाँ \hat{i} और \hat{j} , x और y अक्ष के अनुदिश मात्रक सदिश हैं, के अधीन गति आरम्भ करता है, तो समय t पर इस बल द्वारा विकसित शक्ति क्या होगी ?
 - 1) $(2t^3 + 3t^5)$ W
 - (2) $(2t^2+3t^3)$ W
 - $+\frac{(3)}{(4)}$ $(2t^2+4t^4)$ W $(2t^3+3t^4)$ W

129. किसी प्रतिरोध R से प्रवाहित आवेश का समय t के साथ विचरण Q=at-bt² के रूप में होता है, जहाँ a तथा b धनात्मक नियतांक हैं। R में उत्पन्न कल ऊप्पा है:

Heat =

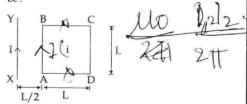
 $(3) \qquad \frac{a^3 R}{3b}$

 $(4) \qquad \frac{a^3 R}{2b}$

130. किसी दिए गए प्रवर्धक में कोई npn ट्रांजिस्टर उभयनिष्ठ उत्सर्जक विन्यास में संयोजित है। 800 Ω का कोई लोड प्रतिरोध संग्राहक परिपथ में संयोजित है और इसके सिरों पर 0.8 V विभवपात है। यदि धारा प्रवर्धक गुणांक 0.96 है तथा परिपथ का निवेश प्रतिरोध 192 Ω है, तो इस प्रवर्धक की वोल्टता लब्धि तथा शक्ति लब्धि क्रमशः होंगी:

- (1) 4, 3.69
- (2) 4, 3.84
- (3) 3.69, 3.84
- (4) 4, 4

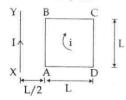
CODE


Question Paper - 1st May

Y

28

English+Hindi


- 131. A piece of ice falls from a height h so that it melts completely. Only one -quarter of the heat produced is absorbed by the ice and all energy of ice gets converted into heat during its fall. The value of h is: [Latent heat of ice is 3.4×10^5 J/kg and g = 10 N/kg]
 - (1) 68 km
 - (2) 34 km
 - (3) 544 km
 - (4) 136 km
- 132. A square loop ABCD carrying a current i, is placed near and coplanar with a long straight conductor XY carrying a current I, the net force on the loop will be:

- (1) $\frac{\mu_0 \text{IiL}}{2\pi}$
- $(2) \quad \frac{2\mu_0 \text{Ii}}{3\pi} \nearrow$
- $\begin{array}{c}
 (3) & \frac{\mu_0 \operatorname{Ii}}{2\pi} \\
 \end{array}$ $\begin{array}{c}
 2\mu_0 \operatorname{IiL} \\
 3\pi
 \end{array}$
- 133. A uniform rope of length L and mass m_1 hangs vertically from a rigid support. A block of mass m_2 is attached to the free end of the rope. A transverse pulse of wavelength λ_1 is produced at the lower end of the rope. The wavelength of the pulse when it reaches the top of the rope is λ_2 . The ratio λ_2/λ_1 is:
 - $(1) \qquad \sqrt{\frac{m_1 + m_2}{m_1}}$
 - (2) $\sqrt{\frac{m_1}{m_2}}$
 - (3) $\sqrt{\frac{m_1 + m_2}{m_2}}$
 - $(4) \qquad \sqrt{\frac{m_2}{m_1}}$

- 131. बर्फ का कोई टुकड़ा ऊँचाई h से इस प्रकार गिरता है कि वह पूर्णत: पिघल जाता है। उत्पन्न होने वाली ऊष्मा का केवल एक-चौथाई भाग ही बर्फ द्वारा अवशोषित किया जाता है तथा बर्फ की समस्त ऊर्जा इसके गिरते समय ऊष्मा में रूपान्तरित हो जाती है। यदि बर्फ की गुप्त ऊष्मा $3.4 \times 10^5 \ J/kg$ तथा $g = 10 \ N/kg$ है, तो ऊँचाई h का मान है:
 - (1) 68 कि.मी.

 - (3) 544 कि.मी.
 - (4) 136 कि.मी.
- 132. कोई वर्गाकार पाश (लूप) ABCD जिससे धारा i प्रवाहित हो रही है, किसी लम्बे सीधे चालक XY जिससे धारा I प्रवाहित हो रही है के निकट एक ही तल में रखा है। इस पाश पर लगने वाला नेट बल होगा:

- (1) $\frac{\mu_0 \text{liL}}{2\pi}$
- $(2) \qquad \frac{2\mu_0 \text{Ii}}{3\pi}$
- $(3) \qquad \frac{\mu_0 \operatorname{Ii}}{2\pi}$
- (4) $\frac{2\mu_0 \operatorname{IiL}}{3\pi}$
- 133. द्रव्यमान \mathbf{m}_1 तथा लम्बाई \mathbf{L} की कोई एकसमान रस्सी किसी दृढ़ टेक से ऊर्ध्वाधर लटकी है। इस रस्सी के मुक्त सिरे से द्रव्यमान \mathbf{m}_2 का कोई गुटका जुड़ा है। रस्सी के मुक्त सिरे पर तरंगदैर्घ्य λ_1 का कोई अनुप्रस्थ स्पन्द उत्पन्न किया जाता है। यदि रस्सी के शीर्ष तक पहुँचने पर इस स्पन्द की तरंगदैर्घ्य λ_2 हो जाती है। तब अनुपात λ_2/λ_1 का मान है:

$$(1) \qquad \sqrt{\frac{m_1 + m_2}{m_1}}$$

- (2) $\sqrt{\frac{m_1}{m_2}}$
- (3) $\sqrt{\frac{m_1 + m_2}{m_2}}$
- $(4) \qquad \sqrt{\frac{m_2}{m_1}}$

IPMT 2016

CODE

He

Xe

Question Paper - 1st May

English	+Hindi	2
134.	energ wave U ₂ ar	ck body is at a temperature of 5760 K. The gy of radiation emitted by the body at length 250 nm is U_1 , at wavelength 500 nm is ind that at 1000 nm is U_3 . Wien's constant, 88×10^6 nmK. Which of the following is ct?
	(1)	$U_2 > U_1$
	(2)	$U_1 = 0$
	(3)	$U_3 = 0$
	(4)	$U_1 > U_2$
135.		of the following options which one can be used oduce a propagating electromagnetic wave?
	(1)	An accelerating charge
	(2)	A charge moving at constant velocity
	(3)	A stationary charge
	(4)	A chargeless particle
136.		th one of the following characteristics is iated with adsorption?
	(1)	ΔG and ΔS are negative but ΔH is positive
((2)	ΔG is negative but ΔH and ΔS are positive
-	(3)	ΔC, ΔH and ΔS all are negative
\vee	(ar	Δ G and Δ H are negative but Δ S is positive
137.		pressure of H ₂ required to make the potential of electrode zero in pure water at 298 K is:
	(1)	10 ⁻⁴ atm
((2)	10^{-14} atm
	(3)	10^{-12} atm
	(4)	10 ⁻¹⁰ atm
138.		ddition of a catalyst during a chemical reaction which of the following quantities?
	(1)	Activation energy —
	(2)	Entropy
	(3)	Internal energy*
	(4)	Enthalpy A

134. कोई कृष्णिका 5760 K ताप पर है। इस पिण्ड द्वारा उत्सर्जित विकिरणों की ऊर्जा, तरंगदैर्घ्य 250 nm पर U1, तरंगदैर्घ्य 500 nm पर U_2 तथा तरंगदैर्घ्य 1000 nm पर U_3 है। वीन-नियतांक, $b = 2.88 \times 10^6$ nmK है। नीचे दिया गया कौन सा संबंध सही है ? BCNOFNE U₁ = 0 Na Mg | U₃ = 0 Na Mg | U₃ = 0 Pb st 7 22 Nb No To Ru Pe Pd 1
U₁ > U₄3 Pg | U₄ | Ta we Po O1 St P नीचे दिए गए विकल्पों में से किसका उपयोग एक संचरित विद्युत चुम्बकीय तरंग उत्पन्न करने में किया जा सकता है? कोई त्वरित आवेश नियत वेग से गतिमान कोई आवेश (2)स्थिर आवेश (3)आवेशहीन कण 136. निम्नलिखित लक्षणों में से कौन सा अधिशोषण से सम्बन्धित 12 + VC. ΔG तथा ΔS ऋणात्मक लेकिन ΔH धनात्मक होता है। ΔG ऋणात्मक लेकिन ΔH एवं ΔS धनात्मक होते हैं। ΔG, ΔH एवं ΔS सभी ऋणात्मक होते हैं। ΔG एवं ΔH ऋणात्मक लेकिन ΔS धनात्मक होता है। 137. 298 K पर शुद्ध जल में H2 - इलेक्ट्रोड का विभव शून्य करने के लिये आवश्यक H2 दाब है : 10^{-4} atm (1) 10^{-14} atm (2) 10^{-12} atm (3) 10^{-10} atm 138. किसी रासायनिक अभिक्रिया में उत्प्रेरक के योग से निम्नलिखित में से कौन सी मात्रा बदलती है? सक्रियण ऊर्जा

ऐन्ट्रॉपी

आंतरिक ऊर्जा ऐंथैल्पी

(2)

(4)

CODE

Question Paper - 1st May

139. For the following reactions:

(a) $CH_3CH_2CH_2Br + KOH \rightarrow CH_3CH = CH_2 + KBr + H_2O$ H_3C CH_3 $CH_$

(c) $+ Br_2 \longrightarrow Br_2$

Which of the following statements is correct?

- (1) (a) is substitution, (b) and (c) are addition reactions.
- (2) (a) and (b) are elimination reactions and (c) is addition reaction.
- (a) is elimination, (b) is substitution and (c) is addition reaction.
- (4) (a) is elimination, (b) and (c) are substitution reactions.
- 140. The product formed by the reaction of an aldehyde with a primary amine is:
 - (1) Aromatic acid
 - (2) Schiff base CH3CHO+ CH3NH
 - Ketone
 - (4) Carboxylic acid CH2
 - The correct statement regarding the basicity of arylamines is:
 - Arylamines are generally more basic than alkylamines, because the nitrogen atom in arylamines is sp-hybridized.
 - (2) Arylamines are generally less basic than alkylamines because the nitrogen lone-pair electrons are delocalized by interaction with the aromatic ring π electron system.
 - (3) Arylamines are generally more basic than alkylamines because the nitrogen lone-pair electrons are not delocalized by interaction with the aromatic ring π electron system.
 - (4) Arylamines are generally more basic than alkylamines because of aryl group.
- 142. Equal moles of hydrogen and oxygen gases are placed in a container with a pin-hole through which both can escape. What fraction of the oxygen escapes in the time required for one-half of the hydrogen to

30

English+Hin

139. निम्न अभिक्रियाओं के लिये :

(a) $CH_3CH_2CH_2Br + KOH \rightarrow CH_3CH = CH_2 + KBr + H_2O \rightarrow H_3C$

(b) R + KOH R OH OH

(c) $+ Br_2 \longrightarrow Br$

निम्न में से कौन सा कथन सत्य है?

- (1) (a) प्रतिस्थापन, (b) और (c) योगज अभिक्रियाएँ हैं।
- (a) और (b) विलोपन अभिक्रियाएँ हैं तथा (c) योगः अभिक्रिया है।
- (a) विलोपन अभिक्रिया, (b) प्रतिस्थापन अभिक्रिया औ
 (c) योगज अभिक्रिया है।
- (4) (a) विलोपन अभिक्रिया, (b) और (c) प्रतिस्थाप अभिक्रियाएँ हैं।
- 140. ऐल्डिहाइड एवं प्राथमिक ऐमीन की अभिक्रिया से बना उत्पाह है :
 - (1) ऐरोमेटिक अम्ल
 - (2) शिफ् बेस
 - (3) किटोन
 - (4) कार्बोक्सिलिक अम्ल
- 141. ऐरीलऐमीन के क्षारकता के लिये सही कथन है :
 - (1) ऐरीलऐमीन सामान्यतः ऐिल्कलऐमीन से ज्यादा क्षारीय है क्योंकि ऐरीलऐमीन में नाइट्रोजन परमाणु sp-संकरित है।
 - (2) ऐरीलऐमीन सामान्यतः ऐल्किलऐमीन से कम क्षारीय होती है क्योंकि नाइट्रोजन के एकाकी - युग्म इलेक्ट्रोन एरोमेटिक वलय के म - इलेक्ट्रोन के साथ विस्थापित होते हैं।
 - (3) ऐरीलऐमीन सामान्यत: ऐल्किलऐमीन से ज्यादा क्षारीय होती है क्योंकि नाइट्रोजन के एकाकी – युग्म इलेक्ट्रोन ऐरोमेटिक वलय के म – इलेक्ट्रोन के साथ विस्थापित नहीं होते हैं।
 - (4) ऐरिल समृह के कारण ऐरीलऐमीन सामान्यतः ऐल्किलऐमीन से ज्यादा क्षारीय है।
- 142. हाइड्रोजन एवं ऑक्सीजन गैसों के समान मोलों को एक पात्र में रखा गथा है, जो कि एक सूक्ष्म छिद्र के द्वारा पलायन कर सकते हैं। हाइड्रोजन के आधे पलायन में लगे समय में ऑक्सीजन का j कितना अंश पलायन करेगा?
 - (1) 1/2
 - (2) 1/8
 - (3) 1/4
 - (4) 3/8

Englis	h+Hindi		31		Y
143.	The	correct statement regarding the comparison of	1		
	stage	gered and eclipsed conformations of ethane, is:	143.		के सांतरित एवं ग्रस्त संरूपण की तुलना के लिये सही
	(1)	The staggered conformation of ethane is more	1		न है :
		stable than eclipsed conformation, because		(1)	एथेन का सांतरित संरूपण, ग्रस्त संरूपण से अधिक
		staggered conformation has no torsional			स्थायी है क्योंकि सांतरित संरूपण में मरोड़ी विकृती
	(2)	strain. The staggered conformation of ethane is less			नहीं है।
	(-)	stable than eclipsed conformation, because		(2)	एथेन का सांतरित संरूपण, ग्रस्त संरूपण से कम स्थायी
		staggered conformation has torsional strain.			है क्योंकि सांतरित संरूपण में मरोड़ी विकृती है।
	(3)	The éclipsed conformation of ethane is more		(3)	एथेन का ग्रस्त संरूपण, सांतरित संरूपण से अधिक
		stable than staggered conformation, because		1-7	स्थायी है क्योंकि ग्रस्त संरूपण में मरोड़ी विकृती नहीं
	(4)	eclipsed conformation has no torsional strain.			है।
	(4)	The eclipsed conformation of ethane is more stable than staggered conformation even	1	(4)	एथेन का ग्रस्त संरूपण, सांतरित संरूपण से अधिक
		though the eclipsed conformation has		(4)	
-	2	torsional strain.	İ		स्थायी है जबकि ग्रस्त संरूपण में मरोड़ी विकृती हैं।
1144=	In w	hich of the following options the order of	144.	निम्न	लिखित में से कौन सा क्रम दिये गये गुणधर्म के परिवर्तन
	arran	gement does not agree with the variation of		के अ	नुसार सहमत नहीं है ?
	prop	erty indicated against it?		(1)	Li < Na < K < Rb (बढ़ती हुई धात्विक क्रिज्या)
	(1)	Li < Na < K < Rb (increasing metallic radius)		(2)	$AI^{3+} < Mg^{2+} < Na^+ < F^-$ (बढ़ते हुये आयनिक
~	04	M^{3+} < Mg^{2+} < Na^+ < F^- (increasing ionic size)			आकार)
	(3)	B < C < N < O (increasing first ionisation		(3)	B < C < N < O (बढ़ता हुआ प्रथम आयनिक एन्थैल्पी)
	(0.)	enthalpy)		(4)	I < Br < Cl < F (बढ़ती हुई इलेक्ट्रोन लब्धि एन्थ्रैल्पी)
	(4)	I < Br < Cl < F (increasing electron gain		30.00	and the second s
		enthalpy)	145.		प्रथम कोटि की अभिक्रिया का वेग अभिक्रिया प्रारम्भ होने
145.	The r	ate of a first-order reaction is 0.04 $\mathrm{mol}l^{-1}\mathrm{s}^{-1}$			0 sec बाद 0.04 mol l ⁻¹ s ⁻¹ तथा 20 sec बाद.
	at 10	seconds and 0.03 mol l^{-1} s ⁻¹ at 20 seconds		0.03	$\operatorname{mol} l^{-1}\operatorname{s}^{-1}$ है। इस अभिक्रिया की अर्द्ध आयु काल
	after	initiation of the reaction. The half-life period		है :	OMA
	(1)	54.1s	_	(1)	54.1 s
0	(2)	24.1s 10 80 CQV	bl,	(2) (3)	24.1s V/2 - 0.03
	(3)	34.1s 0.0000 V	1/	(3) A	34.1s Q44.1s = R
m	(4)	44.1 s D-03 ("Orall	12		
M146.	When	n copper is heated with conc. HNO3 it	146.		को सान्द्र HNO3 के साथ गर्म करने पर बनता है :
	produ	res:		(1)	Cu(NO ₃) ₂ और N ₂ O
	JUN 1	Cu(NO ₃) ₂ and N ₂ O		(2)	Cu(NO ₃) ₂ 3就 NO ₂
	(2)	Cu(NO ₃) ₂ and NO ₂		(3)	Cu(NO ₃) ₂ और NO
	(3)	Cu(NO ₃) ₂ and NO		(4)	Cu(NO ₃) ₂ , NO और NO ₂
	(4)	Cu(NO ₃) ₂ , NO and NO ₂	147.	<u>ਧੀ</u> ਟੀਜ	अणु में विभिन्न ऐमीनो अम्ल एक दूसरे से जुड़े रहते हैं :
147.	In a pi	rotein molecule various amino acids are linked	11,		दाता आबंध के द्वारा
5.00	-	ner by :		(1)	α - ग्लाईकोसिडिक आबंध के द्वारा
	(1) (2)	dative bond		(2)	
	(3)	α - glycosidic bond β - glycosidic bond		(3)	β - ग्लाईकोसिडिक आबंध के द्वारा
,	(4)	peptide bond		(4)	पेप्टाईड आबंध के द्वारा
148.	Fog ic		148.	धुंध व	जेलॉइडी विलयन है : () अस्ति ()
1.20	Action Control	a colloidal solution of : Gas in gas		(1)	गैस में गैस का
8 -	(2)	Liquid in gas		(2)	गैस में द्रव का
	(3)	Gas in liquid		(3)	द्रव में गैस का (1000 + 4000)
	(4)	Solid in gas		(4)	गैस में ठोस का
	0	1. 1.1 1.610-	0	TAI	0. 1. 1.200 100
	U	W + LAN NY3 -	. 0	MIN	32 7

IPMT 2016

CODE

English+Hin

Question Paper - 1st May

32

Y 149. Match items of Column I with the items of Column II and assign the correct code: Column I Column II (a) Cyanide process Ultrapure Ge (b) Froth floatation (ii) Dressing of ZnS process (c) Electrolytic reduction (iii) Extraction of Al (d) Zone refining (iv) Extraction of Au (v) Purification of Ni Code: (a) (b) (c) (d) (1)(iii) (iv) (v) (i) (iv) (iii) (3)(ii) (iii) (i) (v) (4)(ii) (iii) (iv)

149. स्तम्भ I के उल्लेख को स्तम्भ II के उल्लेख से मिलायें। स संकेत पद्धति है:

	स्तंभ ।		स्तंभ॥
(a)	सॉयनाइड प्रक्रम	(i)	अतिशुद्ध Ge
	फेन प्लवन विधि		ZnS का प्रसाधन
(c)	विद्युत अपघटनी अपचयन		Al का निष्कर्षण
	मंडल परिष्करण		Au का निष्कर्षण
		1	Ni का शोधन

कोड:

	(a)	(b)	(c)	(d)
(1)	(iii)	(iv)	(v)	(i)
(2)	(iv)	(ii)	(iii)	(i)
(3)	(ii)	(iii)	(i)	(v)
(4)	(i)	(ii)	(iii)	(iv)

- निम्न में से कौनसी एक गैर-अपचायक शुगर है?
 - सुक्रोस (1)
 - माल्टोस (2)
 - लेक्टोस (3)
 - ग्लुकोस
- 151. The correct statement regarding RNA and DNA, respectively is:

150. Which one given below is a non-reducing sugar?

Sucrose

Maltose -

Lactose -

Glucose *

(2)

(3)

(4)

- (1) The sugar component in RNA is 2'-deoxyribose and the sugar component in DNA is arabinose.
- The sugar component in RNA is arabinose and the sugar component in DNA is 2'deoxyribose.

The sugar component in RNA is ribose and the sugar component in DNA is 2'-deoxyribose. 1

- (4)The sugar component in RNA is arabinose and the sugar component in DNA is ribosex
- 152. The correct thermodynamic conditions for the spontaneous reaction at all temperatures is:
 - (1) $\Delta H < 0$ and $\Delta S < 0$
 - $\Delta H < 0$ and $\Delta S = 0$ (2)
 - $\Delta H > 0$ and $\Delta S < 0$

 $\Delta H < 0$ and $\Delta S > 0$

- 151. RNA एवं DNA के लिये सही कथन क्रमश: है:
 - RNA में शर्करा घटक 2'-डिऑक्सीराइबोस और DNA में शर्करा घटक औरबिनोस है।
 - RNA में शर्करा घटक औरबिनोस है और DNA i शर्करा घटक 2'-डिऑक्सीराइबोस है।
 - RNA में शर्करा घटक राइबोस है और DNA में शर्कर घटक 2'-डिऑक्सीराइबोस है।
 - RNA में शर्करा घटक औरबिनोस है और DNA i शर्करा घटक राइबोस है।
- 152. सभी तापों पर अभिक्रिया के स्वत:प्रवर्तित के लिये सहं ऊष्मागतिकीय शर्तें हैं :
 - DH -- V Δ H < 0 तथा Δ S < 0
 - $\Delta H < 0$ तथा $\Delta S = 0$

 $\Delta H > 0$ तथा $\Delta S < 0$

 $\Delta H < 0$ तथा $\Delta S > 0$

Question Paper - 1st May

English+Hindi

33

- 153. Which is the correct statement for the given acids?
 - Phosphinic acid is a diprotic acid while phosphonic acid is a monoprotic acid.
- Phosphinic acid is a monoprotic acid while phosphonic acid is a diprotic acid.
 - (3)Both are diprotic acids.
 - (4) Both are triprotic acids.
- 154. MY and NY₃, two nearly insoluble salts, have the same K_{sp} values of 6.2×10^{-13} at room temperature. Which statement would be true in regard to MY and NY3?
 - (1) The addition of the salt of KY to solution of MY and NY3 will have no effect on their solubilities.
 - The molar solubilities of MY and NY3 in (2)water are identical. 🗡
 - The molar solubility of MY in water is less than that of NY3.
 - (4) The salts MY and NY3 are more soluble in 0.5 M KY than in pure water.
- 155. Which of the following is an analgesic?
 - Chloromycetin V
 - Novalgin \ (2)
 - Penicillin 📉
 - (4) Streptomycin X
- The pair of electron in the given carbanion, CH₂C ≡ C is present in which of the following orbitals?
 - (1) sp
 - 2p T (2)
 - sp^3 (3)
 - sp^2 (4)
- Among the following, the correct order of acidity
 - HClO₄ < HClO₂ ✓ HClO < HClO₂ (1)
 - $HClO_3 < HClO_4 < HClO_2 < HClO$ (2)
 - (3)HCIO < HCIO₂ ← HCIO₃ < HCIO₄ ✓
 - HClO₂ < HClO < HClO₃ < HClO₄
- Which one of the following statements is correct when SO2 is passed through acidified K2Cr2O7 solution 2
 - Green Cr₂(SO₄)₃ is formed.
 - (2) The solution turns blue. >
 - (3)The solution is decolourized. >
 - (4) SO2 is reduced. 1

- 153. निम्नलिखित में से कौन सा कथन दिये गये अम्लों के लिये **सही** है?
 - फॉस्फिनिक अम्ल द्विप्रोटी अम्ल है जबकि फॉस्फोनिक (1) अम्ल एकप्रोटी अम्ल है।
 - फॉस्फिनिक अम्ल एकप्रोटी अम्ल है जबकि फॉस्फोनिक (2)एक द्विप्रोटी अम्ल है।
 - दोनों द्विप्रोटी अम्ल है। (3)
 - दोनों त्रिप्रोटी अम्ल है। (4)
- MY एवं NY3 दो लगभग अविलेय लवणों का कमरे के ताप पर K_{sp} का मान, 6.2×10^{-13} एकसमान है। निम्न में से कौन सा कथन MY एवं NY3 के संदर्भ में सत्य है?
 - KY लवण को MY एवं NY3 के विलयन में डालने पर इनकी विलेयता पर कोई प्रभाव नहीं पड़ता है।
 - MY एवं NY3 की जल में मोलर विलेयता समान है। (2)
 - MY की जल में मोलर विलेयता NY3 से कम है। (3)
 - MY एवं NY3 के लवण शुद्ध जल की तुलना में 0.5 M KY में ज्यादा विलेय है।
- 155. निम्न में से कौन सी दवा एक पीडाहारी है
 - क्लोरोमाइसीटिन (1)
 - (2)नोवलजिन
 - पेनिसिलिन (3)
 - स्टेप्टोमाइसिन
- दिये गये कार्ब-ऋणायन, $CH_3C \equiv C^{\bigoplus}$ के युग्म इलेक्ट्रोन निम्न 156. में से किस कक्षक में उपस्थित है?
 - (1)sp
 - (2)2p
 - (3) sp^3
 - (4)
- 157. निम्न में से अम्लता का सही क्रम है :
 - HClO₄ < HClO₂ < HClO < HClO₃ (1) (2)
 - HClO₃ < HClO₄ < HClO₂ < HClO
 - (3)HClO < HClO₂ < HClO₃ < HClO₄
 - (4) HClO₂ < HClO < HClO₃ < HClO₄
- निम्नलिखित में से कौन सा कथन सत्य है जब SO2 को अम्लीय $K_2Cr_2O_7$ के विलयन में से पास किया जाता है?
 - (1) हरा Cr₂(SO₄)3 बनता है।
 - विलयन नीला पड जाता है। (2)
 - (3)विलयन रंगहीन हो जाता है।
 - (4) SO2 अपचियत होता है।

IPMT 2016

CODE

Question Paper - 1st May

161.

(1)

(2)

(3)

(4)

Y 159. Predict the correct order among the following: lone pair - bond pair > bond pair - bond pair > lone pair - lone pair Tone pair - lone pair > lone pair - bond pair > bond pair - bond pair lone pair - lone pair > bond pair - bond pair > lone pair - bond pair bond pair - bond pair > lone pair - bond pair > lone pair - lone pair 160. Two electrons occupying the same orbital are distinguished by: Spin quantum number (2)Principal quantum number (3)Magnetic quantum number (4) Azimuthal quantum number 161. The product obtained as a result of a reaction of nitrogen with CaC2 is: Ca₂CN Ca(CN)₂ (2)CaCN₃ 162. Natural rubber has: Random cis - and trans-configuration All cis-configuration (2)(3)All trans-configuration (4) Alternate cis - and trans-configuration Which one of the following orders is correct for the bond dissociation enthalpy of halogen molecules? $F_2 > Cl_2 > Br_2 > I_2$ $Cl_2 > Br_2 > F_2 > I_2$ $Br_2 > I_2 > F_2 > Cl_2$ 164. The reaction can be classified as: (1) Williamson alcohol synthesis reaction Williamson ether synthesis reaction,

Alcohol formation reaction X

Dehydration reaction

(3)

(4)

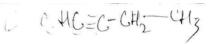
English+Hindi 159. निम्न में से सही क्रम होगा: एकाकी युग्म - आबंधी युग्म > आबंधी युग्म - आबंधी युग्म > एकाकी युग्म - एकाकी युग्म एकाकी युग्म-एकाकी युग्म > एकाकी युग्म-आबंधी युग्म > आबंधी युग्म - आबंधी युग्म एकाको युग्म - एकाको युग्म > आबंधी युग्म - आबंधी युग्म > एकाकी युग्म - आबंधी युग्म आबंधी युग्म - आबंधी युग्म > एकाकी युग्म - आबंधी (4)युग्म > एकाकी युग्म - एकाकी युग्म दो इलेक्ट्रोन जो कि एक ही कक्षक में हैं। इनमें अन्तर किसके द्वारा किया जा सकता है? (1) प्रचक्रण क्वांटम संख्या (2)मुख्य क्वांटम संख्या (3)चुम्बकीय क्वांटम संख्या दिगंशीय क्वांटम संख्या नाइट्रोजन की CaC2 के साथ अभिक्रिया से प्राप्त उत्पाद है: (1) Ca₂CN (2)Ca(CN)2 (3)CaCN (4)CaCN₂ 162. प्राकृतिक रबर में : अनियमित सिस्-एवं ट्रांस-विन्यास है। (1) (2)सभी सिस-विन्यास है। (3)सभी ट्रान्स-विन्यास है। (4)एकान्तर सिस्-एवं ट्रांस-विन्यास है। निम्नलिखित में से कौन क्रम हैलोजन अणुओं की आबंध वियोजन एन्थैल्पी के लिये सही है? (1) $F_2 > Cl_2 > Br_2 > I_2$ $I_2 > Br_2 > Cl_2 > F_2$ $Cl_2 > Br_2 > F_2 > I_2$ $Br_2 > I_2 > F_2 > Cl_2$ 164. अभिक्रिया को वर्गीकृत किया जा सकता है :

विलियम्सन एल्कोहल संश्लेषण अभिक्रिया

विलियम्सन ईथर संश्लेषण अभिक्रिया

ऐल्कोहल विरचन अभिक्रिया

निर्जलीकरण अभिक्रिया



-	English Hindi) It 1+(Z)
-	165. Lithium has a bcc structure. Its density is 530 kg m ⁻³ and its atomic mass is 6.94 g mol ⁻¹ .		तिथियम की bcc संरचना है। इसका घनत्व 530 kg m ⁻³ था परमाणु द्रव्यमान 6.94 g mol ⁻¹ है। लिथियम धातु के
1	Calculate the edge length of a unit cell of Lithum metal. $(N_A = 6.02 \times 10^{23} \mathrm{mol}^{-1})$	ए	कक कोष्टिका के कोर की लम्बाई ै(`````
1	(1) 264 pm (2) 154 pm (3) 352 pm (4) 527 pm	(1	$N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$) $Q^2 = \frac{1}{2000}$
Ì	(2) 154 pm	(2	1) 154 pm 1/2 / 200-0500 Not
	(3) 352 pm	(3	1 0 8
I	(4) 527 pm	(4	527 pm fb sr
l	166. The ionic radii of A+ and B- ions are	66. A	+ एवं B- आयनों की आयनिक त्रिज्याएँ क्रमशः
l	0.98×10^{-10} m and 1.81×10^{-10} m. The		98×10 ⁻¹⁰ m एवं 1.81×10 ⁻¹⁰ m है। AB में प्रत्येक
l	coordination number of each ion in AB is:	7	ायन की उपसहसंयोजन संख्या है :
l	(1) 2	(2	
ı	(2) 6 a P	(3	-
I	(3) 4 0 2 mass =	(4	8 (3)
l	$(4) 8 530 = 1 \times 2 \times 6.02 \times 1$	67. ए	क 6.5 g विलेय का 100 g जल में विलयन का 100°C पर
ı	/ 167. At 100°C the vapour pressure of a solution of 6.5 g of	वा	The state of the
I	a solute in 100 g water is 732 mm . If $K_b = 0.52$, the boiling point of this solution will be:		14 14 8141
	(1) 103°C 100 6.54	(1	
I	101°C	(2	
	(3) 100°C Kb >	(4	10200
l	(4) 102°C OLUVESTYON OF 1		u (प.स. 63), Gd (प.स. 64) और Tb (प.स. 65) के
	168. The electronic configurations of Eu (Atomic No. 63),	इत	नेक्ट्रोनिक विन्यास है :
	Gd (Atomic No. 64) and Tb (Atomic No. 65) are:	(1	
	(1) $[Xe]4f^{7}6s^{2}$, $[Xe]4f^{7}5d^{1}6s^{2}$ and $[Xe]4f^{9}6s^{2}$	(2	
STREET	(2) [Xe]4f ⁷ 6s ³ [Xe]4f ⁸ 6s ² and [Xe]4f ⁸ 5d ¹ 6s ²	(3)	
	(3) [Xe]4f ⁶ 5d ¹ 6s ² [Xe]4f ⁷ 5d ¹ 6s ² and [Xe]4f ⁹ 6s ²	(4)) [Xe]4f ⁶ 5d ¹ 6s ² , [Xe]4f ⁷ 5d ¹ 6s ² और [Xe]4f ⁸ 5d ¹ 6s ²
OTHER PROPERTY.	(4) $[Xe]4f^{6}5d^{1}6s^{2}$, $[Xe]4f^{7}5d^{1}6s^{2}$ and		[Ae]+) Sures
Total September 1	$[Xe]4f^85d^16s^2$		म्निलिखित में से कौन सा कथन हाइड्रोजन के लिये असत्य
	169. Which of the following statements about hydrogen	है	
STATE	is incorrect?	(1)	
-	(1) Dihydrogen does not act as a reducing agent	(2)) हाइड्रोजन के तीन समस्थानिक है जिसमें से ट्राइटियम प्रचुरता में है।
	(2) Hydrogen has three isotopes of which tritium is the most common.	(3)	
	(3) Hydrogen never acts as cation in ionic salts.	(4)	
	(4) Hydronium ion, H ₃ O ⁺ exists freely in solution.	(4))

Question Paper - 1st May

170. In the reaction

 $\begin{array}{l} H-C \equiv CH \xrightarrow{(1) NaNH_2/liq.NH_3} (2) \xrightarrow{(1) NaNH_2/liq.NH_3} X \xrightarrow{(2) CH_3 CH_2 Br} X \xrightarrow{(2) CH_3 CH_2 Br} Y, \end{array}$ X and Y are:

- (1) X=1-Butyne; Y=2-Hexyne (2) X=1-Butyne; Y=3-Hexyne
- (3) X = 1-Butyne; Y = 3-Hexyne X = 2-Butyne; Y = 3-Hexyne
- (4) X = 2-Butyne; Y = 2-Hexyne
- 171. Consider the following liquid vapour equilibrium.

 Liquid ⇒ Vapour

 Which of the following relations is correct?

(1) $\frac{d \ln P}{dT} = \frac{\Delta H_v}{RT^2}$

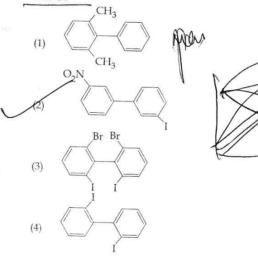
- (2) $\frac{d \ln G}{d T^2} = \frac{\Delta H_v}{R T^2}$
- (3) $\frac{d \ln P}{dT} = \frac{-\Delta H_v}{RT}$
- (4) $\frac{d \ln P}{d T^2} = \frac{-\Delta H_v}{T^2}$
- Which of the following statements about the composition of the vapour over an ideal 1: 1 molar mixture of benzene and toluene is correct? Assume that the temperature is constant at 25°C. (Given, Vapour Pressure Data at 25°C, benzene = 12.8 kPa, toluene = 3.85 kPa)
 - Not enough information is given to make a prediction.
 - (2) The vapour will contain a higher percentage benzene.
 - The vapour will contain a higher percentage of toluene.
 - (4) The vapour will contain equal amounts of benzene and toluene.
- 173. Which of the following biphenyls is optically active?

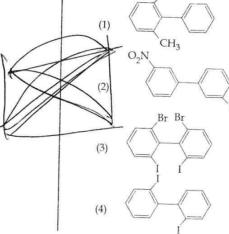
36

English+F

170. अभिक्रिया में

 $H-C \equiv CH \xrightarrow{(1) \text{NaNH}_2/\text{liq.NH}_3} X \xrightarrow{(1) \text{NaNH}_2/\text{liq.NH}_3} X \xrightarrow{(2) \text{CH}_3 \text{CH}_2 \text{Br}} X \xrightarrow{(3) \text{TR}_3 \text{CH}_2 \text{Rr}} X$


- X = 1-ब्यूटाइन; Y = 2-हेक्साइन
- (2) X = 1-ब्यूटाइन ; Y = 3-हेक्साइन
- (3) X = 2-ब्यूटाइन; Y = 3-हेक्साइन
- (4) X = 2-ब्यूटाइन; Y = 2-हेक्साइन
- 171. नीचे दिये गये द्रव वाष्प साम्यावस्था,


द्रव ⇌ वाष्प

में से कौन सा संबन्ध सही है?

- (1) $\frac{d \ln P}{d T} = \frac{\Delta H_v}{R T^2}$
- (2) $\frac{d \ln G}{d T^2} = \frac{\Delta H_v}{R T^2}$
- (3) $\frac{d \ln P}{d T} = \frac{-\Delta H_v}{RT}$
- (4) $\frac{d \ln P}{d T^2} = \frac{-\Delta H_v}{T^2}$
- 172. बेन्जीन एवं टॉल्र्इन के 1:1 आदर्श मोलर मिश्रण के वा संयोजन के लिये निम्नलिखित में से कौन सा कथन सत्य है कल्पना करें कि तापमान 25°C पर स्थिर है। (दिये गये वा दाब 25°C पर बेन्जीन=12.8 kPa, टॉल्र्डन=3.85 kPa)
 - अपर्याप्त सूचनाओं के कारण कोई पूर्वानुमान नहीं लगा जा सकता है।
 - वाष्प में बेंजीन की अधिक प्रतिशतता होगी।
 - (3) वाष्प में टॉल्ईन की अधिक प्रतिशतता होगी।
 - वाष्प में समान मात्रा में बेन्जीन एवं टॉलूईन होगी।
- 173. निम्न में से कौन सा बाईफिनायल प्रकाशिक सक्रिय है?

 CH_3

Question Paper - 1st May

English+Hindi

37

- **174.** Which of the following reagents would distinguish cis-cyclopenta-1, 2-diol from the trans-isomer?
 - (1) Aluminium isopropoxide
 - (2) Acetone ·

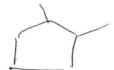
(3) Ozone ,

(4) MnO₂

CH3- CD

175. The correct statement regarding a carbonyl compound with a hydrogen atom on its alphacarbon, is:

- a carbonyl compound with a hydrogen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as keto-enol tautomerism.
- (2) a carbonyl compound with a hydrogen atom on its alpha-carbon never equilibrates with its corresponding enol.
- (3) a carbonyl compound with a hydrogen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as aldehyde-ketone equilibration.
- (4) a carbonyl compound with a hydrogen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as carbonylation.

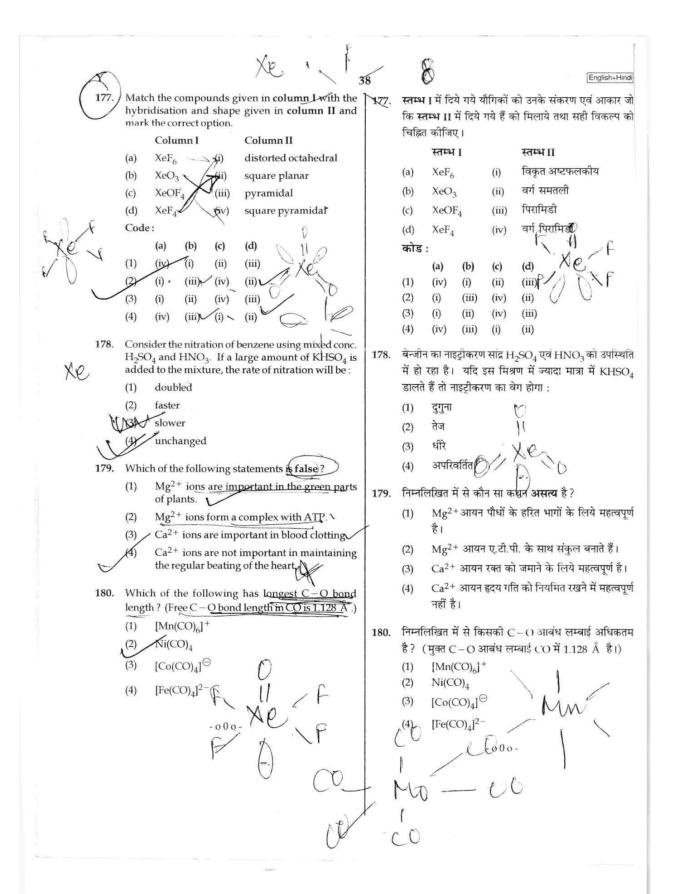

176. Consider the molecules CH, NH, and H₂O. Which of the given statements stalse!

The H-C-H bond angle in CH_4 is larger than the H-N-H bond angle in NH_3 .

- (2) The H-C-H bond angle in CH₄, the H-N-H bond angle in NH₃, and the H-O-H bond angle in H₂O are all greater than 90°.
- (3) The H-O-H bond angle in H_2O is larger than the H-C-H bond angle in CH
- (4) The H-O-H bond angle in H_2O is smaller than the H-N-H bond angle in NH_{3-1}

174. निम्न में से कौन सा अभिकर्मक सिस्-साइक्लोपेन्टा-1, 2-डाईऑल एवं इसके ट्रांस-समावयवी में भेद करेगा?

- (1) ऐल्युमिनियम आइसोप्रोपोक्साइड
- (2) ऐसीटोन
- 3) ओजोन
- (4) MnO₂


- 175. कार्बोनिल यौगिक जिनमें α –कार्बन पर हाइड्रोजन उपस्थित है, के लिये सही कथन है :
 - (1) कार्बोनिल यौगिक जिनमें α-कार्बन पर हाइड्रोजन परमाणु उपस्थित है, यह इनके अनुरूप ईनॉल में आसानी से साम्यावस्था में होते हैं और यह प्रक्रम किटो ईनॉल चलावयवता कहलाती है।
 - (2) कार्बोनिल यौगिक जिनमें त्र-कार्बन पर हाइड्रोजन परमाणु उपस्थित है, यह इनिके अनुरूप ईनॉल से कभी भी साम्यावस्था में नहीं-होते हैं।
 - (3) कार्बोनिल यौगिक जिनमें α-कार्बन पर हाइड्रोजन परमाणु उपस्थित है, यह इनके अनुरूप ईनॉल में आसानी से साम्यावस्था में होते हैं और यह प्रक्रम ऐल्डिहाइड -कीटोन साम्यावस्था कहलाता है।
 - कार्बोनिल यौगिक जिनमें α-कार्बन हाई जोनन परमाणु उपस्थित है, यह इनके अनुरूप ईनॉल में आसानी स साम्यावस्था में होते हैं और यह प्रक्रम कार्बोनिलीकरण कहरेंगात है।

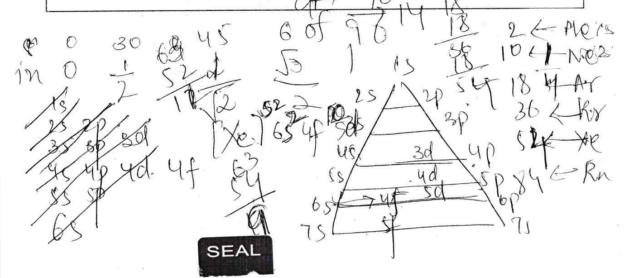
 CH₄, NH₃ और म₂O अणुओं के लिये नीचे दिये गये कथनों में से कौन सा असत्य है?

- (1) CH₄ में H−C−H आबंध-क्रिण, NH₃ में H−N−H आबंध-कोण से अधिक है।
- (2) CH₄ में H−C−H आवंध-कोण, NH₃ में H−N−H आवंध-कोण तथा H₂O में H−O−H आवंध-कोण, सभी में 90° से अधिक है।
- (3) H₂O में H-O-H आबंध-कोण, CH₄ में H-C-H आबंध-कोण से अधिक है।
- (4) 400 में H−O−H आबंध-कोण, NH₃ में H−N−H आबंध-कोण से कम है।

PMT 2016

Question Paper - 1st May

English+Hindi


Read carefully the following instructions:

- 1. Each candidate must show on demand his/her Admit Card to the Invigilator.
- 2. No candidate, without special permission of the Superintendent or Invigilator, would leave his/ her seat.
- 3. The candidates should not leave the Examination Hall without handing over their 3. कार्यरत निरीक्षक को अपना उत्तर पत्र दिए बिना एवं Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. Cases where a candidate has not signed the Attendance Sheet second time will be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case.
- 4. Use of Electronic/Manual Calculator is prohibited.
- 5. The candidates are governed by all Rules and Regulations of the Board with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the Board.
- 6. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 7. The candidates will write the Correct Test Booklet Code as given in the Test Booklet/ Answer Sheet in the Attendance Sheet.

निम्नलिखित निर्देश ध्यान से पढ़ें :

- 1. पछे जाने पर प्रत्येक परीक्षार्थी, निरीक्षक को अपना प्रवेश-कार्ड दिखाएं।
- 2. अधीक्षक या निरीक्षक की विशेष अनुमति के बिना कोई परीक्षार्थी अपना स्थान न छोडें।
- उपस्थिति-पत्रक पर दुबारा हस्ताक्षर किए बिना कोई परीक्षार्थी परीक्षा हॉल नहीं छोडेंगे। यदि किसी परीक्षार्थी ने दूसरी बार उपस्थित-पत्रक पर हस्ताक्षर नहीं किए तो यह माना जाएगा कि उसने उत्तर पत्र नहीं लौटाया है और यह अनुचित साधन का मामला माना जाएगा।
- इलेक्ट्रानिक/हस्तचालित परिकलक का उपयोग वर्जित है।
- 5. परीक्षा-हॉल में आचरण के लिए परीक्षार्थी बोर्ड के नियमों एवं विनियमों द्वारा नियमित हैं। अनुचित साधन के सभी मामलों का फैसला बोर्ड के नियमों एवं विनियमों के अनुसार होगा।
- 6. किसी हालत में परीक्षा पुस्तिका और उत्तर पत्र का कौई भाग अलग न करें।

प्रीक्षा पुहितका / उत्तर पत्र में दिए गए परीक्षा पुस्तिका संके को परीक्षार्थी सही तरीके से उपस्थिति-पत्रक में लिखें।

